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Abstract 

The use of the Internet of Things (IoT) brings radical advancements in the domain of waste collection as it enables 

the organization of demand-responsive schedules, which allows a step change in the efficiency of operations. One 

major drawback of demand-responsive schedules is that they bring about uncertainty in the planning of resources and 

strong variability in their deployment, as it follows daily demand. This is undesirable in real-life operations as it makes 

it difficult to reserve resources, secure commitment from suppliers, and ensure the stability of operational processes. 

The challenge, therefore, is to create scheduling approaches for waste collection that are not only efficiency-driven 

but also both demand responsive and supply-friendly. In this paper, we present a solution approach for the waste 

collection vehicle routing problem in an IoT context (IoT-WCVRP) that focuses on these requirements and 

demonstrate its applicability through a case study of Rotterdam in The Netherlands. In this case, our approach 

increases vehicle utilization rates by 5% and reduces emissions and travelled kilometres by 6% and 8% respectively. 
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1. Introduction 

The Internet of Things (IoT) is the core technology of digital transformation - it is the key to turning products, 

machines, facilities, and other physical things into digital assets. Its integration into the waste collection domain allows 

for the creation of cyber-physical systems, which integrate sensing and networking on waste containers with the use 

of appropriate wireless sensors, connecting them as such to the Internet as well as to each other. These wireless sensors 

monitor at regular intervals each container’s waste fill level and transmit the data to the cloud of the waste management 

operator. Such a system holds the potential of reshaping waste collection services toward more demand-responsive, 

efficient, and dynamic operations (Pardini et al., 2019). With access to real-time information on the status of each 

container, the dynamic organization of waste collection is enabled as containers are collected only when it is necessary. 

This ensures that the servicing needs are met, and the waste is collected in a timely fashion, which consequently 

translates to a reduction of overfill phenomena and collection of partially-full containers. These are two of the most 

important indicators of inefficient waste collection management as the former poses an array of hazards to human 

health and deteriorates citizen satisfaction, whilst the latter incurs higher operational costs and strains unnecessarily 

the environment with avoidable pollution emissions. The importance of IoT in waste collection is additionally 

highlighted by the fact that the constant waste generation data stream transmitted by the installed sensors can aid in 

the identification of seasonal trends or events, and therefore it supports an appropriately adapted waste collection 

service.  

Domain experts attest to the financial and environmental gains that can be achieved by operating a demand-

responsive waste collection service. They also stress, however, that such a service is associated with strong variability 

in the deployment of resources to an extent that is undesirable in real-life operations. As the waste collection service 

responds to the daily waste generation, it can be understood that the daily constructed truck routes are completely 

variable in terms of the number and location of stops, duration of the route, and number and weight of containers. 

Without the planners’ manual (and potentially partial) intervention, this can lead to an array of problems, starting with 

the loss of administrative control. As the drivers are not traditionally assigned to designated areas, it becomes difficult 

for administrators to efficiently control and organize their operations, as well as allocate responsibilities to the vehicle 

crew. The drivers, on the other hand, are no longer familiar with a pre-assigned territory and its relative characteristics 

(e.g. traffic and parking patterns), but they are in addition unaware of site-specific problems that could be encountered 

on previous days by other drivers (e.g. road works, blocked containers). This can lead to slower and more inefficient 

reactions from the drivers’ side when unpredicted issues arise, but also to the need for enhanced internal 

communication between all drivers and planners. 

A variety of models have been proposed for the IoT- waste collection vehicle routing problem (IoT-WCVRP), 

which uses the containers’ real-time fill levels as a means to reduce waste demand uncertainty. However, the literature 

still lacks techniques specifically devoted to the previously explained IoT-derived planning issue. The present work 

introduces a smart solution approach for the IoT-WCVRP, which has as an overarching objective to balance the trade-

off between demand-responsive and supply-friendly operations. This practically means maintaining the highest degree 

possible flexibility in vehicle dispatching, while also maintaining a certain level of consistency when demand varies 

from day to day. The proposed approach makes use of a two-step clustering technique that consecutively assigns waste 

containers to two-level clusters and subsequently solves a multi-trip VRP with intermediate facilities with the help of 

the repeated nearest neighbor algorithm and the application of a modified 2-Opt local improvement algorithm. To 

demonstrate the feasibility of the proposed solution three dynamic scheduling strategies are examined using real 

household waste data from the Municipality of Rotterdam in the Netherlands. 

The remainder of the paper is organized as follows. Section 0 provides a literature review of the various models 

focused on the IoT-WCVRP, and discusses the most highlighted dynamic scheduling strategies applied to waste 

collection. Section 3 formulates the WCVRP while section 4 gives an outline of the proposed solution approach. 

Section 5 describes the real case study and Section 6 shows the results of the application of the model. Section 7 

discusses and interprets the findings of the research, and outlines the limitations of the model. Lastly, Section 8 

concludes the paper and presents some suggestions for model improvement and further research.  
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2. Literature Review 

To construct optimal waste collection routes that pass by a selected set of containers can be referred to as the waste 

collection vehicle routing problem (WCVRP). An extensive set of solution approaches have been developed and 

applied to solve various components of the WCVRP which indicates that no perfect method exists to tackle this 

problem in its holistic nature. The focus is instead placed on distinctive features of the problem. This is mainly because 

the WCVRP is an NP-hard combinatorial optimization problem which means that as its instances grow in size the time 

to solve the problem grows exponentially. 

The solution approaches can be distinguished into two categories. The first employs mathematical programming 

techniques to solve small network instances to optimality but at the expense of exponentially increasing computation 

time (Omara et al., 2018). The second addresses heuristic and metaheuristic methodologies which do not guarantee 

optimality but yield good results in a shorter execution time. This category is widespread among researchers as 

heuristics and meta-heuristics are often simple to describe and implement, which leads to their easy adaptability.  

Insertion heuristics are often preferred by researchers due to their simplistic nature. The most common criterion 

used to insert containers in a route is the shortest distance or time, meaning that the nearest neighbor containers are 

iteratively prolonging a constructed route (Faccio, 2011; Heijnen, 2019; Neffati, 2021; Vonolfen et al., 2011). Less 

used criteria in insertion algorithms include the farthest insertion (Abbatecola et al., 2016; Neffati, 2021), the quantity 

of waste the containers hold (Expósito-Márquez et al., 2019), and ratios of various quantities, for example between 

the “urgency of collection” and the cost of insertion (Teixeira et al., 2004). In the latest years, the focus is on 

metaheuristics which include ant colony optimization (Karadimas et al., 2005), genetic algorithms (Amal et al., 2018; 

Strand et al., 2020), particle swarm optimization (Hannan et al., 2018; Wu et al., 2020), simulated annealing (Babaee 

Tirkolaee et al., 2019; Buhrkal et al., 2012), tabu search (Arribas et al., 2010; McLeod et al., 2013; Zsigraiova et al., 

2013) and neighborhood algorithms (Markov et al., 2016; Nuortio et al., 2006). 

Irrespective of the choice of an exact or inexact solution approach, the WCVRP complexity can be reduced by 

reducing the problem size. This approach usually referred to as a cluster-first route-second approach, partitions the 

‘customers set’ into individual smaller instances, based on an array of rules, which are solved separately into complete 

routes. The k-means algorithm is popular among researchers as it allows containers to be assigned to clusters using as 

an only criterion the distance (Anagnostopoulos et al., 2015; Hua et al., 2016). Some authors use the real-time fill 

levels of the containers to allocate them to clusters which are formed before every collection using a predefined 

threshold level (Akhtar et al., 2017; Hannan et al., 2018; Ramos et al., 2018). Some researchers aggregate containers 

into “super” containers under the condition that they belong in the same location and bear the same time windows 

(Buhrkal et al., 2012; Christodoulou et al., 2016). Other researchers aim at the construction of clusters that are subject 

to constraints such as vehicle capacity (Abbatecola et al., 2016), shift duration (Kim et al., 2006), traffic temporal 

conditions (Arribas et al., 2010), or a balanced number of containers.  

Many variations of the WCVRP exist, depending on the problem characteristics, the network size, and the often 

conflicting objectives and constraints (Dotoli & Epicoco, 2017). The minimization of distance and time are among the 

most popular objectives examined by researchers (Abdallah et al., 2019; Amal et al., 2018; Hannan et al., 2018; Neffati, 

2021). Cost minimization is another important objective that can be rather ambiguous, as researchers often consider 

different types of costs in their studies. The main advantage of minimizing costs, nevertheless, is that different types 

of goals can all be expressed in terms of the same monetary unit (Markov et al., 2016; Mes et al., 2014; Omara et al., 

2018; Ramos et al., 2018). The minimization of environmental effects is rarely studied, but certain related aspects that 

have been examined in the literature include the minimization of CO2 emissions (Strand et al., 2020), the service of 

high-priority areas to reduce social and environmental fire hazards (Anagnostopoulos et al., 2015) and the 

minimization of energy consumption (Expósito-Márquez et al., 2019).  

Depending on the level of realism that is to be adopted, the number of imposed constraints grows linearly. At the 

outset, the vehicles are typically subject to constrained capacities, meaning that the accumulated amount of waste of 

any route must not exceed the vehicle’s capacity. This capacity-constrained VRP is referred to as CVRP, which 

constitutes the most popular VRP variant among researchers studying the WCVRP (McLeod et al., 2013; Son, 2014; 

Anagnostopoulos et al., 2015; Christodoulou et al., 2016; Akhtar et al., 2017; Hannan et al., 2018; Omara et al., 2018; 

Ferrer & Alba, 2019). In the case that multiple trips are allowed to be performed in a route, the CVRP transforms into 

a multi-trip VRP. This corresponds to more realistic operations as the vehicle can visit the disposal facility multiple 
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times to unload its accumulated waste and regain its capacity, before returning to its route or the depot at the end of 

the day (Babaee Tirkolaee et al., 2019; Kim et al., 2006). Temporal constraints can also be imposed on the waste 

collection routes, representing either the shift’s legal duration (Kim et al., 2006; Arribas et al., 2010; Faccio et al., 

2011; Zsigraiova et al., 2013; Abbatecola et al., 2016), the drivers’ break (Kim et al., 2006; Buhrkal et al., 2012), or 

the time windows in which containers can be collected throughout the day (Kim et al., 2006; Nuortio et al., 2006; 

McLeod et al., 2013). In specific cases, the number of stops allowed in a route is bounded to a maximum threshold so 

that a workload balance can be achieved (Kim et al., 2006; Buhrkal et al., 2012). For the same reason, added constraints 

have been imposed on the number of times a waste collection vehicle is allowed to visit a disposal facility (Son, 2014; 

Abbatecola et al., 2016).  

The models specifically devoted to the use of IoT technology cover various components of the traditional waste 

collection problem but also use dynamic scheduling strategies. With the adoption of dynamic scheduling strategies, 

the question as to which containers should be collected and at what moment in time (usually which day) becomes an 

option. The two main scheduling categories examined in the literature are completely reactive scheduling and 

predictive-reactive scheduling. In the former, no firm scheduling is generated in advance, and decisions are made 

locally and in real time. This is possible as real-time access to the actual amounts generated in the network is enabled, 

which reduces the related randomness and uncertainty of this otherwise stochastic variable. In the latter, schedules 

made for a rolling horizon are revised in response to real-time events (Ouelhadj & Petrovic, 2009).  

With each approach, various trigger rules and ranking methods are examined to define the containers’ eligibility 

for (possible) collection. Some authors following the predictive-reactive scheduling approach developed scheduling 

strategies in which containers are daily scheduled for collection based on their “attractiveness” in the whole system. 

Ramos et al. (2018), for example, developed a scheduling strategy that aims at waste quantity maximization throughout 

a rolling horizon, while Abdallah et al. (2019), Heijnen (2019), and Vonolfen et al. (2011) base the container selection 

on future container overflow predictions. Common among researchers who follow the completely reactive scheduling 

approach is the use of a predefined minimum fill level to select the containers to be collected each day (Zsigraiova et 

al., 2013; Anagnostopoulos et al., 2015; Ramos et al., 2018; Ferrer & Alba, 2019). Some researchers demonstrate, 

under a variety of scenarios, that the best collection results can be achieved with a static 70-75% minimum fill level 

(Faccio, 2011; Akhtar et al., 2017; Hannan et al., 2018). Other studies adopting the simplified approach, also select 

containers that have not yet reached the threshold fill level. These extra containers are considered as they are located 

close to the already generated routes, and/or are expected to be full in a short time (Johansson, 2006; Mes et al., 2014; 

Christodoulou et al., 2016; Omara et al., 2018). 

To better define the containers' eligibility for collection, researchers classify them based on a variety of ranking 

rules. Most common is the usage of different priority levels (e.g. “must-go”, a “may-go” or a “no-go”), by establishing 

certain threshold fill levels and special rules such as the day of the week, the type of location the container is located 

in, its interaction with the containers on the same collection site, etc. (Johansson, 2006; McLeod et al., 2013; Ferrer & 

Alba, 2019). Vonolfen et al. (2011), Anagnostopoulos et al. (2015) and Wu et al. (2020) classify the containers to high 

or low priority, primarily according to their location in the network, and secondarily by the amount of accumulated 

waste. Containers that are located close to hospitals, fuel stations, schools, etc. are considered high priority, irrespective 

of their accumulated amount of waste. The work of Christodoulou et al. (2016) makes use of a hybrid classification 

method that regards not only the estimated container fill levels but also the waste accumulation period. Similarly, Mes 

et al. (2014) consider the expected number of days till the containers become full to schedule them for collection. 

The review of the literature can be summarized as follows. Much of the effort in the literature on the IoT-WCVRP 

has been spent on examining various scheduling strategies and constructing the best routes throughout a given planning 

horizon with a given set of containers. Moreover, sophisticated algorithms have been developed that work towards 

multiple objectives and constraints. However, less attention has been paid to the complete variability which is 

associated with dynamic waste collection operations, which as described in the previous section poses a significant 

issue for such services. For a similar issue on local package delivery, but with a deeper focus on driver familiarity, 

Zhong et al. (2007) created a two-stage vehicle routing model based on a strategic core area design and operational 

cell routing. This work inspired the solution approach introduced in this paper, which aims in balancing the trade-off 

between dispatch consistency and flexibility by creating static and demand-responsive clusters of containers 

consecutively, and subsequently solving a multi-trip VRP with intermediate facilities. Our contribution is the new 

formulation of the WCVRP-IoT that includes this trade-off.  



 Author name / Transportation Research Procedia 00 (2023) 000–000  5 

3. Problem description 

This section focuses on the formulation of the waste collection problem, where containers are selected for collection 

based on a scheduling strategy and are assigned to routes in such a way that the total travelled kilometres are minimized 

and the total collected waste is maximized. The problem can be defined as a multi-trip VRP with intermediate facilities, 

represented by waste disposal facilities, which are visited either once the effective weight payload of the vehicles is 

reached, or just before a vehicle shift is over. The vehicles are allowed to visit the facilities multiple times, hence 

multi-trip, to unload the accumulated waste and regain their capacity before returning to their route or the depot at the 

end of the shift.  

The problem is defined on a directed real-network graph 𝐺 = (𝑉, 𝐴), where the set of nodes 𝑉 =  𝑉𝑑 ∪  𝑉𝑓 ∪  𝑉𝑚 

consists of a depot 𝑉𝑑 = {0},  a disposal facility 𝑉𝑓 = {1},  m nodes 𝑉𝑚 = { 2, … ,2 + 𝑚}, and the set of arcs is 𝐴 =
 {(𝑖, 𝑗, 𝑟)| 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗, 𝑟 ∈ 𝑅}, where 𝑟 denotes the road type with 𝑅 = {𝑈𝑟𝑏𝑎𝑛, 𝐻𝑖𝑔ℎ𝑤𝑎𝑦}. Let 𝑡𝑖𝑗𝑟  and  𝑑𝑖𝑗𝑟  be the 

travel time and travel distance associated with arc (𝑖, 𝑗, 𝑟), and 𝐾 = {1, … , 𝑘} be the given set of homogeneous vehicles 

with maximum weight capacity VC and maximum shift duration T. 𝐻𝑖,𝑘,n is a continuous variable indicating the 

driving duration of vehicle 𝑘 when it passes from node 𝑖 at moment n. Let 𝑥𝑖𝑗𝑟,𝑘 be equal to 1 if arc (𝑖, 𝑗, 𝑟) is used by 

vehicle 𝑘 and 0 otherwise, and 𝑦𝑠,𝑘 be equal to 1 if collection site 𝑠 is served by vehicle 𝑘 and 0 otherwise. Moreover, 

let 𝑛𝑖𝑗𝑟,𝑘 be the number of times arc (𝑖, 𝑗, 𝑟) is traversed by vehicle k, and 𝑛𝑑𝑓𝑘 be the number of times vehicle k visits 

the disposal facility for unloading. 

Each collection site 𝑠 ∈ S , where S⊆ 𝑉𝑚, and represents a set of  𝑛𝑐 containers that are situated at the same spot 

and are scheduled for collection on the same day, denoted by 𝑠 = {1, … , nc}. The service time 𝑠𝑡𝑠 of each collection 

site is calculated with equation (1) where 𝑙𝑡 is the vehicle leveling time, and 𝑚𝑡 is the vehicle hook moving time. 

Leveling comprises the time needed to stabilize the vehicle for loading, and the time needed to safely place the hook 

back in the vehicle. Moving time comprises the time needed to lift each container, unload its content, and safely place 

it back in its initial position. The total weight of waste at each collection site is calculated with equation (2) where the 

associated fill level 𝑓𝑠,𝑐 of each container 𝑐 ∈ s is multiplied by its maximum volume capacity 𝑣𝑐𝑠,𝑐 and a volume to 

weight conversion rate denoted by 𝛽. 

 

 
𝑠𝑡𝑠  = 𝑙𝑡 + 𝑛𝑐 ∙ 𝑚𝑡 

 
(1) 

 
𝑤𝑠  = 𝛽 ∑  𝑓𝑠𝑐 ∙  𝑣𝑐𝑠,𝑐

𝑐∈𝑠

 

 

(2) 

The model’s objective is to successively determine the membership of waste containers to two-level clusters, such 

that the total travelled kilometres of the routes constructed to serve the second-level clusters are minimized. Equation 

(3) is used to calculate the total travelled kilometres where 𝑛𝑖𝑗𝑟,𝑘 is the number of times arc (𝑖,𝑗,𝑟) is traversed. 

 

 𝑚𝑖𝑛 ∑ ∑ ∑ 𝑑𝑖𝑗𝑟 ∙ 𝑥𝑖𝑗𝑟,𝑘 ∙ 𝑛𝑖𝑗𝑟,𝑘

(𝑖,𝑗,𝑟)∈𝐴𝑘∈𝐾𝑟∈𝑅

 (3) 

 

The first clustering phase constructs geographically fixed clusters of containers that represent independent waste 

collection areas. The second clustering phase uses the first-level clusters as geographical cores and constructs flexible 

clusters that respond to the daily demand. The successive assignment of containers to the two-level clusters aims in 

balancing the trade-off between dispatch consistency and dispatch flexibility. With the first-level clusters, the daily 

constructed routes can be focused on specific areas, which can reduce the current route-associated variability and 

overlapping. This can help in maintaining dispatch consistency, which can consequentially lead to increased driver 

familiarity and better administration control, as the assignment of drivers to waste collection areas becomes possible. 

With the daily re-assignment of containers to the two-level clusters dispatch flexibility can be maintained, as the 

geographical areas’ boundaries are flexible to accommodate the daily demand. The trade-off occurs as the fixed 

geographical cores of the clusters, which ensure vehicle dispatch consistency to a certain degree, limit the benefits that 

could be obtained by a fully flexible vehicle dispatch.  
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Except from the total travelled kilometres, the total CO2 emissions produced is another important key performance 

indicator (KPI) that is considered in this study. More specifically, the total CO2 emissions are produced while vehicle 

𝑘 is driving, while it serves a collection site 𝑠, and while it unloads its waste at the disposal 𝑉𝑓. To calculate the total 

amount of CO2 emissions produced while driving, equation (4) is used, which references back to the work of Bala et 

al. (2021). The amount of CO2 emissions produced on an arc (𝑖, 𝑗, 𝑟) is the product of its length 𝑙, and an emission 

production factor 𝐸𝑃𝑟,𝑘,𝑛. This factor depends on the arc’s respective road type 𝑟, and the cumulative weight of waste 

𝑄𝑖𝑗,𝑘,𝑛 the vehicle 𝑘 carries at the start of the arc at node 𝑖 each time 𝑛 it traverses it. The emission production factor 

is given per road type for an empty and a full vehicle, therefore to translate it according to the cumulative weight of 

waste equation (5) is applied. It is important to note that the additional weight of the heavy box and equipment used 

to collect and compact the waste that the vehicles continuously carry is not considered. 

 

 

𝐸𝐶𝑂2𝑑𝑟𝑖𝑣𝑖𝑛𝑔 = ∑ ∑ ∑ ∑ 𝑑𝑖𝑗𝑟 ∙ 𝑥𝑖𝑗𝑟,𝑘 ⋅ 𝐸𝑃𝑟,𝑘,𝑛

(𝑖,𝑗,𝑟)∈𝐴𝑟∈𝑅

𝑛𝑖𝑗𝑟,𝑘

𝑛=0𝑘∈𝐾

 

 

(4) 

 

 𝐸𝑃𝑟,𝑘,𝑛 = 𝐸𝑃𝑟,𝑒𝑚𝑝𝑡𝑦 +
(𝐸𝑃𝑟,𝑓𝑢𝑙𝑙 − 𝐸𝑃𝑟,𝑒𝑚𝑝𝑡𝑦) ∗ 𝑄𝑖𝑗,𝑘,𝑛

𝑉𝐶
 

 

(5) 

The total CO2 emissions produced while vehicle 𝑘 serves a collection site 𝑠 is expressed by equation (6), where 

𝐶𝑖𝑑𝑙𝑖𝑛𝑔 is an emission production factor expressed in CO2 gr /min. 

 
𝐸𝐶𝑂2𝑙𝑜𝑎𝑑𝑖𝑛𝑔

= 𝐸𝑃𝑖𝑑𝑙𝑖𝑛𝑔 ∗ (∑ ∑ 𝑠𝑡𝑠 ∙ 𝑦𝑠,𝑘

𝑠 ∈ 𝑆𝑘∈𝐾

) 

 

(6) 

The total CO2 emissions produced while vehicle 𝑘 unloads its waste at the disposal 𝑉𝑓 is expressed by (7), where 

𝑢𝑡 is the fixed unloading time at a disposal facility. 

 𝐸𝐶𝑂2𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔
= 𝐸𝑃𝑖𝑑𝑙𝑖𝑛𝑔 ∗ (∑ 𝑢𝑡 ∙ 𝑛𝑑𝑓𝑘

𝑘∈𝐾

) (7) 

 

The formulated problem is subject to: 

 

 ∑ ∑ 𝑥0𝑗𝑟,𝑘

𝑗∈𝑉

= 1

𝑘∈𝐾

 ∀𝑟 ∈ 𝑅 (8) 

 ∑ ∑ 𝑥𝑖0𝑟,𝑘

𝑖∈𝑉

= 1

𝑘∈𝐾

 ∀𝑟 ∈ 𝑅 (9) 

 ∑ 𝑦𝑠,𝑘

𝑠∈𝑆

= 1 ∀𝑘 ∈ 𝐾 (10) 

 ∑ 𝑥𝑖𝑗𝑟,𝑘

𝑖∈𝑉

= ∑ 𝑥𝑗𝑖𝑟,𝑘

𝑖∈𝑉

 ∀𝑟 ∈ 𝑅, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (11) 

 ∑ ∑ 𝑄𝑖𝑗,𝑘,𝑛

𝑖∈𝑉𝑑∪𝑉𝑓

= 0

𝑛𝑖𝑗𝑟,𝑘

𝑛=0

 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝑉 (12) 

 
 

𝑄𝑖𝑗,𝑘,𝑛 + 𝑤𝑗 ≤ 𝑄𝑗𝑖,𝑘,𝑛 + (1 − 𝑥𝑗𝑖𝑟,𝑘)𝑀 
∀𝑗 ∈ S, 𝑖 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑘 ∈ 𝐾, 𝑛 = {0, … , 𝑛𝑖𝑗𝑟,𝑘} (13) 
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 𝑄𝑖𝑗,𝑘,𝑛 ≤ 𝑉𝐶 ∀𝑖 ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑘 ∈ 𝐾, 𝑛 = {0, … , 𝑛𝑖𝑗𝑟,𝑘} (14) 

 𝐻𝑖,𝑘,n ≤ 𝑇 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑛 = {0, … , 𝑛𝑖𝑗𝑟,𝑘} (15) 

 𝐻𝑖,𝑘,n + 𝑠𝑡𝑗 + 𝑡𝑖𝑗   ≤ 𝐻𝑗,𝑘,𝑛 + (1 − 𝑥𝑖𝑗𝑟,𝑘)𝑀 ∀(𝑖, 𝑗) ∈ 𝑉, 𝑟 ∈ 𝑅, 𝑘 ∈ 𝐾, 𝑛 = {0, … , 𝑛𝑖𝑗𝑟,𝑘} (16) 

 𝑥𝑖𝑗𝑟,𝑘 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅 (17) 

 𝑦𝑠,𝑘 ∈ {0,1} ∀𝑠 ∈ 𝑉𝑐 , 𝑘 ∈ 𝐾 (18) 

 𝑄𝑖,𝑘,𝑡 ≥ 0 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (19) 

 𝐻𝑖,𝑘,𝑡 ≥ 0 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (20) 

Constraints (8) and (9) impose that all 𝑘 vehicles must start and finish their routes at the depot. Constraint (10) 

ensures that all collection sites are serviced exactly once, while constraint (11) ensures that the inflows and outflows 

of all nodes in the graph are equal. Constraint (12) states that all vehicles must be empty at the start and end of the 

routes before they return to the depot, therefore, the cumulative weight of waste at the depot and disposal facility nodes 

is set to be zero. Constraint (13) ensures that the cumulative waste carried by vehicle 𝑘 is successively increasing in 

the logical order of the planned route for every node visited except the disposal facility. The effective weight payload 

of the vehicles indicates the moment of visit to the disposal facility for unloading and is set by constraint (14). The 

effective weight payload is used instead of the maximum as it is assumed that the vehicles reach their maximum 

volume capacity before their maximum weight capacity. It must be noted, nevertheless, that a buffer volume capacity 

is usually reserved by the drivers to accommodate unexpected waste laid next to the containers which is incorporated 

in the effective vehicle capacity. The allowed shift duration is maintained by constraint (15) but it must be noted that 

only the effective time for collection is considered as the preparation and break time are ignored. Constraint (16) 

ensures that the cumulative time spent driving to and servicing each collection site of a planned route follows a logical 

progression. Finally, constraints (17), (18), (19), and (20) impose the binary and non-negative variables. 

4. Solution approach 

This solution approach follows a cluster-first route-second approach which divides the problem into a number of 

VRPs, each one corresponding to one of the identified clusters. It could be argued that since the problem size is reduced 

to cluster level, mathematical programming could be used to solve the problem to optimality. On the other hand, as 

the real directed road network is considered, which is highly affected by the urban morphology, the problem’s 

complexities increase. Due to the stated reasons and backed by the fact that the WCVRP is harder to solve than a 

regular VRP due to the added constraints and characteristics, heuristics are employed to solve the IoT-WCVRP. The 

flowchart presented in Fig. 1 depicts the sequential order of the steps of the proposed solution approach, as well as the 

algorithms that are employed at each step.  

During the first clustering phase, all the containers are classified as per their historical monthly frequency of 

collection using the classification scheme presented in Table 1. The containers' monthly fill rate can be used instead 

of the monthly frequency of collection, and also be preferable, depending on data availability. Following the 

classification, the capacitated K-means algorithm is used to assign only the containers with high- or medium-frequency 

of collection into clusters (see Fig. 2a). The algorithm is fed an arbitrary seed to eliminate randomness and to identify 

the optimal number of clusters the Elbow method is employed. 
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Fig. 1. Flowchart of the proposed solution approach 

Table 1. Collection frequency classification scheme 

Classification Classification rule 

High frequency Frequency >= 15 times per month 

Medium frequency 4 times per month < Frequency < 15 times per month 

Low frequency Frequency <= 4 times per month 

 

The second clustering phase starts by classifying all the containers as per their priority of collection using the 

classification scheme presented in Table 2. Then, a dynamic scheduling strategy is selected, which uses the containers’ 

priority classification to schedule only the most appropriate for collection. The three strategies considered are: 

 

• ‘High_Medium’ strategy: selects for collection all high- and medium-priority containers; 

• ‘Same_Site’ strategy: selects for collection all high- and medium-priority containers but also all containers that 

belong on the same site as those; 

• ‘Outskirts’ strategy: selects for collection all high- and medium-priority containers but also all the containers 

located on the outskirts of a city if at least one of them needs to be collected 

Table 2. Collection priority classification scheme 

Classification Classification rule 

High priority Fill level >= 75% OR Accumulation period >= 15 days 

Medium priority 50% < Fill level < 75% 

Low priority Fill level < 50% 

 

The K-nearest neighbor algorithm is finally employed to construct the daily container circuits. To find the optimal 

number of neighbors the tool GridSearchCV is used which is available in scikit-learn, a machine learning library for 

Python, with a test size of 0.2. This indicates that the test data is 20% of the input data, while 80% is the training data. 

To be able to reproduce the same data split and eliminate randomness, an arbitrary seed is also set. From the containers 

scheduled for collection, the ones already assigned to the first-level clusters constitute the training dataset of the 

algorithm (see Fig. 2b), while the rest of the containers constitute the new data that needs to be assigned. Once the 

training is over, the algorithm assigns each new container to the cluster in which the majority of its already assigned 

neighbor containers belong (see Fig. 2c). Fig. 2d presents the daily container circuits for collection, which is important 

to notice follow the cores of the first-level clusters, but maintain flexible boundaries to accommodate the daily 

demand. As not all the containers are used to construct the first-level clusters, dispatch consistency can be maintained 

while dispatch flexibility is not hindered.  



 Author name / Transportation Research Procedia 00 (2023) 000–000  9 

To construct the waste collection routes for each second-level cluster, initial feasible routing solutions are generated 

with the use of the repeated nearest neighbor algorithm and are later optimized with a modified 2-Opt algorithm. A 

routing solution is considered feasible if it satisfies the time constraints related to shift duration and if the weight 

capacity of the vehicle is not violated at any point in the route. Among the constructed routes, certain criteria are used 

to determine which one is the best. If more containers are unassigned in a cluster, then the whole procedure is repeated.  

 

 

Fig. 2. (a) High- and medium-frequency containers assigned to first-level clusters; (b) Containers from the first-level clusters that are scheduled 

for collection are used as training input for the KNN algorithm; (c) The rest of the containers schedule 

The repeated nearest neighbor algorithm constructs as many routes as the number of containers in a cluster as it 

uses each as a starting point (see Fig. 3), and visits consecutively the closest unassigned point, until all sites are visited 

or until all the constraints are met. 

 

Fig. 3. Example of the repeated nearest neighbor algorithm 

The classic 2-Opt algorithm is a simple local search algorithm that examines all possible swapping combinations 

of a route, but only retains the most optimal combination for further improvement. Although it can optimize an initial 

feasible solution, it does not take into consideration any intermediate facilities that should be inserted in a route at 

specific positions. As it is mandatory in the examined problem for the vehicle to visit the disposal facility to regain its 

capacity, the classic 2-Opt algorithm had to be modified. The algorithm uses as a starting point the routing solution 

without disposal facility visits and iteratively looks for improvement opportunities in the neighborhoods of that 

solution. For each neighborhood of the route, it uses a swapping mechanism to replace two edges of the route with 

two other edges and then calculates the new travel distance. If the swapping leads to a shorter travel distance, the 

algorithm proceeds in inserting the visits to the disposal facility at the correct positions in the route and recalculates 

the new travel distance. If the resulting route’s distance is shorter than the travel distance of the initial solution with 

disposal facility visits, then the current route is updated. The algorithm continues building on the improved route by 

repeating the procedure until no more improvements can be found.  

To identify which resulting route performs the best, two criteria are examined: the total weight of waste collected 

and the total number of kilometres travelled. Preference is given to routes that visit all scheduled containers in the 

 

Cluster 1: container A Cluster 1: container C Cluster 1: container B 
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clusters. Between routes that manage to visit all containers, the best is considered the one with the least travelled 

kilometres. Between routes that leave containers unassigned, the best route is considered the one with the highest 

weight over travel distance ratio, which is selected among routes that visit the disposal facility the least number of 

times. The best route can further be optimized under certain conditions. If no more containers are left to be assigned 

but the amount of waste collected during the last tour of a route is less than or equal to 1000kg, the vehicle capacity 

constraint is relaxed and the second to last visit to the disposal facility is omitted. If there are still unassigned containers 

in the cluster while the last tour of a route is partially full (imposed by the time duration of a route), under the condition 

that their total combined weight is lower than or equal to the effective payload capacity, one fuller route is created to 

replace the two-partially full ones. 

5. Model application 

The solid waste collection service of the Municipality of Rotterdam in the Netherlands is used as a case study to 

demonstrate the applicability of the proposed solution approach. The municipality of Rotterdam expands into an area 

of 325.8 km2, of which approximately 106.6 km2 constitutes a body of water, and has a population of 651,631 citizens 

as of 2021 (Rotterdam, 2022). The municipality covers the city of Rotterdam but also several small villages on the 

outskirts. Rotterdam is divided by the river Nieuwe Maas into a northern and a southern part, each served by its waste 

collection system. Each waste collection system is comprised of one depot, one disposal facility, an allocated fleet, 

and a network of underground containers (see Fig. 4). Generally, Rotterdam distinguishes five different waste fractions 

collected by underground waste containers, but the focus of this research explicitly falls on solid household waste.  

 

 

Fig. 4. Waste collection system of Rotterdam (From Rotterdam Container Map) 

The depots constitute the starting and ending point of the operations as they function as the parking lots of the 

collection vehicles. The effective time for waste collection is around 6.5 hours as the time for preparation and breaks 

is excluded. By the end of the shift, the vehicles must return to the depot empty, so it is a requirement that the vehicles 

visit a disposal facility to unload before their return to the depot. The disposal facilities are located next to the river so 

that the vehicles directly unload their content in specially designed waste-carrying vessels. Important to note here is 

the fact that the disposal facilities are open for use not only for the municipal waste collection service but also for 

private waste collection companies. This means that the arrival rates at the facility are completely random and 

uncontrolled, hence the disposal trips cannot be easily planned to minimize queuing time. Both waste collection 

systems employ a homogeneous vehicle fleet with a maximum payload capacity of 10500kg, but only around 9000kg 

is effectively used because usually, the vehicle gets full (volume) before reaching its full weight capacity. Currently, 

the northern waste collection system employs 13 vehicles, while the southern system employs 10 vehicles. The 

northern waste collection system has a network of 3168 solid waste containers, while the southern system has a 
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network of 1785 solid waste containers. All waste containers are equipped with wireless sensors monitoring and 

transmitting their daily waste fill levels. 

For simplification reasons, the northern side is chosen for analysis as its network of underground containers is 

larger and denser. To compute the distance and time matrices between all relevant locations, Dijkstra’s algorithm was 

employed, which uses the city’s road network with road-associated average speeds. The current case is considered a 

sample of 17 routes as realized in one day by the waste collection service of Rotterdam for the northern side. To 

compute the collection frequency of the containers, a log of their service frequency for the month of April (2020) is 

used. To compute the containers’ priority of collection on the examined day as well as the weight of waste they carry, 

their dimensions, last-registered fill levels, and waste accumulation period until that day is used. To construct the paths 

and timelines of the sample routes important assumptions had to be made as only the visiting sequence of the waste 

containers has been provided. The time spent to service each container, the time spent at the disposal facility for 

unloading, and the moment the drivers visit the disposal facility had to be assumed based on empirical knowledge 

obtained when discussing with the company. These parameters’ values can be found in Table 7, as well as the emission 

production factor and the volume-to-weight conversion rate 𝛽 that are used to calculate the CO2 production. 

6. Results 

In this section, the proposed solution approach is tested on the presented case study to evaluate its performance. 

The configuration used to compare the model’s outputs with the current case is referred to as the base case. Out of the 

total 3165 containers 2389 were selected to construct the first-level clusters, the optimal number of which is 12 (see 

Fig. 5a) as derived from the Elbow method when examining the range 13 ± 4. Thirteen constitutes the size of the fleet 

of the northern waste collection system while 4 is an arbitrary number to create some slack. To ensure a fair 

comparison between the base case and the current case, the same 1279 containers collected by the sample routes were 

selected to populate the second-level clusters (see Fig. 5b), meaning no specific scheduling strategy was applied. The 

GridSearch CV algorithm indicated that 23 neighbor containers should be used in the KNN algorithm. 

  

 

Fig. 5. a) First-level clusters b) Second-level clusters 

From Fig. 5a, which presents the first-level level clusters, it can be observed that most of the containers are assigned 

to appropriate clusters, but that is not the case for containers located farther away from dense agglomerations, for 

example at the boundaries of clusters 4, 7, and 5. This can be attributed to the fact that the algorithm was fed an 

arbitrary seed to ensure that the results are reproducible and deterministic. If a different seed was selected, the initial 

starting conditions would have been different, and the resulting clusters could potentially be different.  

Looking at Fig. 5b, which presents the second-level level clusters, we can see that some containers are not assigned 

optimally, for example at the boundaries of clusters 4 and 8, and that can be attributed to two reasons. The first reason 
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regards the first-level clusters formation, it was already mentioned that the collection sites at the boundaries of clusters 

4, 7, and 5 were not appropriately assigned. Because a collection site located near those boundaries was scheduled for 

collection on that specific day, meaning it was included in the training dataset of the KNN algorithm, it conveyed the 

problem to the construction of the second-level clusters, as observed. The second reason can probably be attributed to 

the fact that a uniform distance weight was considered in the GridSearchCV tool. If a weighted approach was followed 

instead, meaning that the nearby containers of an unassigned container have more weight than the containers farther 

away, the containers’ assignment could have possibly been better. 

Table 3. Current case vs Base case under a variety of KPIs 

Scenarios Number of routes 
Average vehicle 

utilization 
Total 

kilometres 

Average 

duration 
CO2 (kg) 

Weight/ Total 

kilometres 

Current Case 17 75% 826 5.5 1433 286 
Base Case 19 80% 761 4.7 1351 311 

 

The performance of the routes constructed for the current case and the base case is compared in Table 3 under a variety 

of key performance indicators (KPIs). First, it can be seen that the base case achieves an almost 8% reduction in the 

total travelled kilometres when compared to the current case, though it is important to remind here that the routes of 

the current case had to be solved under the consideration of the shortest path. Due to this reason, it can be said, without 

certainty, that the improvement threshold could have been larger. Moreover, Table 3 shows that even though two 

additional routes are constructed for the base case, a shorter average route duration is achieved, as well as a higher 

average vehicle capacity utilization and a lower CO2 production. More specifically, the base case achieved a 5% 

increase in the average vehicle capacity utilization and a 5.7% decrease in CO2 production, which proves that by 

reducing the construction of partially-full routes, higher efficiency levels can be achieved. Lastly, it can be observed 

that the weight over total kilometres ratio of the base case is 8.8% higher than the current case as the total collected 

waste remains the same but the total kilometres are comparatively lesser. In conclusion, the approach provides a 

significant improvement in all KPI’s.  

6.1. Sensitivity analysis 

To evaluate the robustness of the model’s solution, several configurations of different tunable parameters used at 

the first-level clustering are examined. In Table 8 in the appendix, the indicative parameter values taken into 

consideration in this analysis are presented. The parameters examined are the range of the number of clusters used in 

the Elbow method to find the optimal number of clusters and a variety of combinations of different minimum and 

maximum capacity constraints. It must be stated that the scenarios examined are not exhaustive of all the different 

combinations that could have been checked. Table 8 also presents for each scenario the KPIs used to evaluate the 

model’s performance and the percentage difference between them and the base case (scenario 1). By comparing all 

the KPIs we can see that the best-performing scenarios are 2, 10, and 18 (which are solved under the same combination 

of capacity constraints), while the worst-performing configurations are 6, 14, and 22. The range in which the 

percentage difference of all scenarios fluctuates within, which is derived from the extreme values of the best and worst 

scenarios, is presented in Table 4. The fact that the fluctuation range for each of the examined KPIs is roughly ±4% 

of the base case proves that the model results are robust and the examined parameters play a trivial role in the overall 

performance of the model. 

Table 4: Percentage difference ranges for each KPI 

 
Total kilometres Total CO2 (kg) Total fuel (ltr) Weight/ Total kilometres 

Max 3.9% 2.9% 3.0% 3.2% 

Min -3.1% -1.5% -1.6% -3.7% 
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6.2. Scheduling strategies evaluation 

This section demonstrates how the developed model can be used to investigate and evaluate different scheduling 

strategies. More specifically, the dynamic scheduling strategies introduced in section 4 are investigated to understand 

how the different ways of selecting the containers can affect the efficiency of the operations. The base case is used as 

a reference to compare the performance of each scheduling strategy, therefore the model is tuned to the parameters of 

scenario 1 (see Table 8 in the appendix). It must be reminded that for the base case no scheduling strategy is applied, 

only the containers collected on the examined day are scheduled for collection in the model. 

The performance of the examined strategies is presented in the following figures and tables. Fig. 6 depicts for each 

examined scheduling strategy and the base case the total number of containers selected for collection, as well as their 

collection priority classification. The priority classification follows the rules presented in Table 2. Table 5 presents 

the performance of each of the examined strategies and the base case under a variety of indicators, while Table 6 

shows the total CO2 emissions produced by each strategy while the vehicles are in both the driving and idling state. 

 

 

Fig. 6. Dynamic scheduling strategies under a variety of KPIs 

Table 5: Performance of the examined dynamic scheduling strategies 

Strategy 
Total 

kilometres 

Total weight 

(TN) 

Average vehicle 

utilization 

Average 
container 

utilization 

Number of 

routes 

Weight (kg)/ Total 

kilometres 

Base_Case 761 237 80% 58% 19 311 
High_Medium 753 230 80% 72% 18 306 

Outskirts 848 251 82% 59% 21 296 

Same_Site 799 250 80% 62% 21 313 

Table 6. CO2 emissions produced and fuel consumed per dynamic scheduling strategy 

Indicator State Location Base_Case High_Medium Outskirts Same_Site 

CO2 (kg) Driving - 952 943 1055 994 

CO2 (kg) Idling Disposal facility 93 90 96 99 

CO2 (kg) Idling Collection sites 306 270 346 297 

 

Firstly, we can see that the ‘High_Medium’ strategy selects the least number of containers for collection among 

the other strategies, and in contrast presents the highest average container capacity utilization at 72%. As an expected 

result, it produces the least number of routes among the other strategies and produces the least CO2 emissions both 

while driving and idling. The ‘Base_Case’ follows a similar container selection as the ‘Same_Site’ strategy as all the 

containers located in a collection site which is scheduled for collection are collected. Nevertheless, it is evident that 

not all high and medium-priority containers were collected, as per their classification on the studied day. Instead, 35% 

of all collected containers were of low priority, meaning they were carrying less than 50% of their capacity. For this 

reason the average container utilization for the base case stands only at 58% which is the least among the other 
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strategies. For this reason, even though the ‘Same_Site’ strategy collects 35 containers less than the ‘Base_Case’, it 

still collects 13 more tones of waste.  

The ‘Outskirts’ and ‘Same_Site’ strategies select the same number of high- and medium-priority containers as the 

‘High_Medium’ strategy, but also an additional 315 and 262 low-priority containers respectively. The extra total 

weight of waste collected for both the ‘Outskirts’ and ‘Same_Site’ strategies, in comparison to the ‘High_Medium’, 

is around 20 tons which explains the creation of 3 additional routes. Nevertheless, for the same amount of waste the 

‘Same_Site’ strategy travels 46 additional kilometres compared to the High_Medium strategy while the ‘Outskirts’ 

strategy travels 95 kilometres more. That is expected as the ‘Outskirts’ strategy schedules for collection all the 

containers that are located in the outskirts of the city, if at least one of them requires it, which forces the vehicles to 

travel very long distances irrespective of the accumulated amount of waste. 

As a reminder, the total idling quantities are a summation of the quantities produced while idling at the disposal 

facility and those when idling at the collection sites to serve each container. The time to serve each collection site 

depends on the number of containers located there that need collection, and the time needed to stabilize the vehicle. 

As the stabilizing part happens only once per collection site, savings can be realized at collection sites with multiple 

containers for collection. These savings can be proved if we compare the ‘Same_Site’, and ‘High_Medium’ strategies 

as the former collects 262 additional containers but produces just 27 additional kg of CO2 emissions while idling at 

the collection sites.  

Overall, the ‘High_Medium’ seems to be the best-performing strategy with the lowest number of kilometres and 

lowest amount of produced CO2 emissions. That is especially true in the driving state as it collects the least number 

of containers and creates the least number of routes. Nevertheless, is critical in such operations to collect as much 

waste as possible in a day, which is what the ‘Same_Site’ strategy smartly achieves with just 46 additional kilometres 

compared to the ‘High_Medium’ strategy. Similarly, the ‘Same_Site’ strategy shows a better performance in the 

production of CO2 emissions while idling at the collection sites, as the vehicle leveling takes place only once per site. 

All these strategies clearly indicate the room for improvement for the current strategy of the waste collection service 

of Rotterdam as the ‘Base_Case’ which represents it did not collect all the high- and medium-priority containers, as 

per their classification on the examined day. 

7. Discussion 

The results presented in the previous section showed that the developed model can achieve all the stated research 

objectives. However, it is important to recognize that the model’s outcomes are affected by its limitations and the 

necessary assumptions that had to be made for its implementation.  

In the model, the moment the vehicle reaches its effective payload capacity it makes a trip to the disposal facility 

for unloading. In real-life operations, experienced drivers visit the disposal facility not only when the vehicle becomes 

full, but also when the disposal facilities are less busy, which is something that was not considered in the model. 

Further to that, a vehicle may become full earlier or later than planned, due to waste density being a stochastic variable, 

and overflowing waste put next to the containers which are hard to monitor or predict. In the model, waste density is 

a fixed parameter and overflowing waste is not considered. With these simplifications, the model constructs routes 

with strict disposal facility visits which can’t easily respond to the requirements of a real-life service.  

To achieve a deterministic model behavior and ensure the results' reproducibility the algorithms employed in the 

model are set to be deterministic. More specifically, a seed was fed to the K-means algorithm to keep the starting 

points constant with every model run, while to ensure reproducibility of the train and test data used in the KNN 

algorithm an arbitrary seed with a specific split ratio (80% train data, 20% test data) was used. The GridSearchCV 

tool was used to find the optimal number of neighbors used in the KNN algorithm but it was restricted to a non-

weighted approach. Testing the model showed that restricting the starting points of the K-means algorithm can lead 

to a suboptimal clusters’ formation, which can affect the final solution as the inefficiencies are conveyed by the model 

to the second clustering phase, and subsequently to the constructed routes. To ensure the stability of the formation of 

the first-level clusters is suggested that the K-means algorithm is run for several iterations to improve the resulting 

clusters' inertia, and then selecting the solution with the least inertia for the subsequent model steps. Similarly, it is 

suggested that a weighted approach is followed in the GridSearchCV tool to understand if attaching a larger weight 
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on close-by containers and a smaller weight on far-away containers leads to a better containers’ assignment and 

restricts the problem of the first-level clusters being conveyed further in the final solution. 

The inefficient assignment of closely-located containers to different clusters can also be attributed to the fact that 

the Euclidean distance is used instead of the actual road network distance to perform the containers’ assignment to the 

clusters. Especially at locations where neighbor containers are bounded by physical boundaries such as highways, 

canals, and parks, it is recommended that they are assigned to clusters by using the road network instead of the 

euclidean distance to construct more compact and efficient clusters.  

Certain limitations of the two-stage routing model also affect the performance of the final routes. It is a known 

limitation of the routing model that restricts the choice of the container to be visited after returning from the disposal 

facility to the one closest to the collection site last served. This imposition reduces the probability of finding the 

optimal route therefore it is suggested that every unassigned collection site is considered as the route’s starting point 

when returning from the disposal facility, as is the case when a completely new route is constructed. For the 

optimization of the initial routes, the 2-Opt algorithm is employed which performs the intra-route improvements. 

While this algorithm performed very well, it would be worth examining other local search algorithms, including inter-

route improvement algorithms, to see if they can lead to even better-performing solutions. 

To select the containers to populate the first-level clusters, a classification scheme with certain imposed rules was 

utilized which uses as a criterion their historical monthly frequency of collection. The containers classified as having 

a high and medium frequency of collection were selected for the first-level clustering to ensure that the high waste 

generation sources are the ones guiding the partition of the city into independent waste collection areas. It is 

acknowledged, nevertheless, that using the container’s frequency of collection (due to data unavailability) as a 

selection criterion introduces circularity in the system and does not accurately represent the waste generation patterns 

of the containers. This is because the frequency of collection is not only affected by the fill levels of the containers, 

but also by the way the waste collection service operates e.g. shift duration, no operations during the weekends. If the 

waste fill rates of the containers were used, or different classification rules for that matter, is expected that the model 

outcomes would have been different and probably closer to the real optimum solution.  

8. Conclusions and recommendations 

Demand-responsive waste collection schedules bring about uncertainty in the planning of resources and strong 

variability in their deployment, as they follow the daily demand. The contribution of this paper to the literature is the 

new formulation of the IoT-WCVRP which includes the balanced trade-off between demand-responsive and supply-

friendly operations. This practically means maintaining to the highest degree possible flexibility in vehicle 

dispatching, while also maintaining a certain level of consistency when demand varies from day to day. 

The applicability of the proposed solution approach was demonstrated through a case study of Rotterdam in The 

Netherlands. The case showed that significant gains can be achieved by constructing shorter but fuller cluster-focused 

routes. More specifically, the approach increases vehicle utilization rates by 5% and reduces emissions and travelled 

kilometres by 6% and 8% respectively when compared to the current case.  

With this approach, different scheduling strategies can be evaluated to investigate which are the most beneficial 

under the objectives put forward, as they take into account the priority classification of the containers. Moreover, it 

can be further used to understand the transport mechanisms of waste and how the road network is utilized by waste 

collection vehicles. Among others, the routes’ compactness can be evaluated, which regards the overlapping of routes, 

the identification of the most frequently used roads, and the CO2 emissions produced per waste collection area. 

In general, the developed model can be used by any waste collection service which presents the same characteristics 

and imposes the same constraints as the formulated IoT-WCVRP the model is intended to solve. The model is 

equipped with multiple tunable parameters and uses a variety of user-imposed rules to construct the final solution, 

which enables its generalizability and transferability to new data and situations. It is important to recognize 

nevertheless its limitations, as it is focused on the attainment of specific requirements, and it does not aim to address 

everything that takes place during waste collection scheduling or routing. 

Future research could focus on making the developed model more representative of real-life operations to further 

increase its applicability. The developed model uses the capacity constraint of the vehicles to insert the disposal facility 

trips in the routes. Strategies that are followed in practice could be examined as well, for example visiting the disposal 
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facility if the vehicle is close to it even if it is not fully loaded, or to consider the peak hours of the disposal facility to 

avoid visiting when it is too busy. The model can be extended with the use of time windows assigned for example at 

containers located in the vicinity of public transport stations and education buildings, at locations with high traffic 

conditions, and at locations with accessibility issues or restrictions. Furthermore, the use of electric vehicles could be 

investigated in the future to understand the effects on the performance of the service, which would of course require 

the imposition of additional constraints such as the battery duration, or the number of containers that can be lifted by 

the vehicle. Lastly, the issue of overflown containers was ignored in this research, but in reality, it constitutes one of 

the biggest issues of IoT-based waste collection operations as there is no way to monitor or predict it. It is suggested 

that various strategies are explored to approach this issue, for example, with the use of a special vehicle focused on 

only collecting the overflown waste as identified by drivers passing by, or through orders received by citizens. 

Appendix A. Parameters values 

Table 7. The parameters’ values used in the proposed solution approach 

Symbol Unit Description Value 

𝑢𝑡 min Unloading time at disposal facility 20 

𝑙𝑡 min Vehicle levelling time 1.5 

𝑚𝑡 min Vehicle hook moving time 0.75 

𝛽 kg/m3 Volume to weight conversion rate 75 

𝐸𝑃𝑖𝑑𝑙𝑖𝑛𝑔 CO2 gr/min CO2 emission production factor of idling vehicle 137 

𝐸𝑃𝑐𝑖𝑡𝑦,𝑒𝑚𝑝𝑡𝑦 CO2 gr/min CO2 emission production factor: empty vehicle & city road 1387 

𝐸𝑃𝑐𝑖𝑡𝑦,𝑓𝑢𝑙𝑙 CO2 gr/min CO2 emission production factor: full vehicle & city road 2153 

𝐸𝑃ℎ𝑖𝑔ℎ𝑤𝑎𝑦,𝑒𝑚𝑝𝑡𝑦 CO2 gr/min CO2 emission production factor: empty vehicle & highway road 650 

𝐸𝑃ℎ𝑖𝑔ℎ𝑤𝑎𝑦,𝑓𝑢𝑙𝑙 CO2 gr/min CO2 emission production factor: full vehicle & highway road 780 

 

Table 7 shows the parameters’ values considered in the proposed solution approach. The unloading time at the 

disposal facility, the vehicle leveling and hook moving time, as well as the volume to weight conversion rate were 

provided by the experts of the waste collection department of Rotterdam. The emission production factors used for 

the idling state of the vehicle were retrieved by the study of Lim (2003), while to calculate the factors used for the 

driving state information was retrieved by Volvo (Mårtensson & Trucks). 

Appendix B. Model sensitivity analysis 

Table 8: Model sensitivity analysis  

Scenarios Range 
Min Capacity Max 

Capacity 

Total  

kilometres 

Total CO2 

(kg) 

Total fuel 

(ltr) 

Weight/ Total 

kilometres 

1 13±4 None None 0.0% 0.0% 0.0% 0.0% 

2 13±4 105 None -3.1% -1.5% -1.6% 3.2% 

3 13±4 100 None -0.2% 0.2% 0.2% 0.2% 

4 13±4 95 None 0.6% 1.0% 1.0% -0.6% 

5 13±4 None 200 2.3% 2.0% 2.0% -2.2% 

6 13±4 105 200 3.9% 2.7% 2.8% -3.7% 

7 13±4 100 200 0.9% 1.0% 1.0% -0.9% 

8 13±4 95 200 2.4% 2.6% 2.6% -2.4% 

9 13±3 None None 0.0% 0.0% 0.0% 0.0% 

10 13±3 105 None -3.1% -1.5% -1.6% 3.2% 

11 13±3 100 None -0.2% 0.2% 0.2% 0.2% 

12 13±3 95 None 0.6% 1.0% 1.0% -0.6% 

13 13±3 None 200 3.5% 2.9% 3.0% -3.4% 

14 13±3 105 200 3.9% 2.7% 2.8% -3.7% 
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15 13±3 100 200 0.9% 1.0% 1.0% -0.9% 

16 13±3 95 200 1.4% 1.1% 1.1% -1.4% 

17 13±5 None None 0.0% 0.0% 0.0% 0.0% 

18 13±5 105 None -3.1% -1.5% -1.6% 3.2% 

19 13±5 100 None -0.2% 0.2% 0.2% 0.2% 

20 13±5 95 None 0.6% 1.0% 1.0% -0.6% 

21 13±5 None 200 2.3% 2.0% 2.0% -2.2% 

22 13±5 105 200 3.9% 2.7% 2.8% -3.7% 

23 13±5 100 200 -0.9% 0.1% 0.0% 0.9% 

24 13±5 95 200 2.4% 2.6% 2.6% -2.4% 
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