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There are some examples where freight choices may be of a multiple discrete nature, 

especially the ones at more tactical levels of planning. Nevertheless, this has not been 

investigated in the literature, although several discrete-continuous models for mode/vehicle type 

and shipment size choice have been developed in freight transport.  In this work, we propose that 

the decision of port and mode of the grain consolidators in Argentina is of a discrete-continuous 

nature, where they can choose more than one alternative and how much of their production to 

send by each mode. The Multiple Discrete Extreme Value Model (MDCEV) framework was 

applied to a stated preference data set with a response variable that allowed this multiple-

discreteness. To our knowledge, this is the only application of the MDCEV in regional freight 

context. Free alongside ship price, freight transport cost, lead-time and travel time were included 

in the utility function and observed and random heterogeneity was captured by the interaction 

with the consolidator’s characteristics and random coefficients. In addition, different discrete 

choice models were used to compare the forecasting performance, willingness to pay measures 

and structure of the utility function against. 

 

Keywords: Freight modelling, Multiple Discrete Extreme Value Model, Willingness to pay  
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INTRODUCTION 

  

Freight transport modelling is shifting from an aggregated perspective towards a behavioural 

and disaggregate one (Tavasszy and de Jong, 2014). This is happening not only because of new 

modelling techniques, but also because of the need to address more complex behaviour of the 

supply chain. The data constraints has been more severe in freight rather than passengers, 

resulting in the later adoption of a behavioural framework (Brooks and Trifts, 2008). 

Except for a few very recent studies (for example (Khan and Machemehl, 2017a, 2017b(Khan 

and Machemehl, 2017a)(Khan and Machemehl, 2017a)(Khan and Machemehl, 2017a)(Khan and 

Machemehl, 2017a) and Rashidi and Roorda (2018), all of them in urban context) choices in the 

freight context have been treated as mutually exclusive alternatives within the traditional discrete 

framework (Chow et al., 2010; Danielis and Marcucci, 2007; de Jong et al., 2013, 2000; De Jong 

et al., 2014; Rich et al., 2009; Vellay and de Jong, 2003). This carries the underlying assumption 

that all alternatives are extensive and mutually exclusive, meaning that choosing one fulfils the 

need that triggered the choice and they are perfect substitutes of each other.  

Discrete-continuous models are used when a decision-maker has the possibility of choosing 

between multiple alternatives and the intensity of that choice. There have been some efforts to 

model these situations in the past, starting with applications in passenger transport or electricity 

demand (Dubin and McFadden, 1984; Hanemann, 1984; de Jong, 1990). 

Some researchers have applied this discrete-continuous model framework in regional freight 

transport. Examples with the choice of mode or road vehicle type as the discrete dependent 

variable and shipment size as the continuous dependent variable are: Abdelwahab (1998), 

Abdelwahab and Sargious (1992), de Jong and Johnson (2009), Holguín-Veras (2002) and 

McFadden et al., (1986). All these models however, use a single continuous dependent variable 

and the idea is that only one mode or vehicle type is chosen in reality, that gets all the continuous 

units (so the alternatives are mutually exclusive). Moreover, these models are not or only loosely 

based on the micro-economic theory of utility (or profit) maximisation under a budget constraint. 

Also, the estimation methods used are mostly sequential (two-step): first one choice is estimated, 

and then in the second step the other choice conditional on the estimation results of the first. 

However, simultaneous estimation is statistically more efficient than  two-step estimation.  

Most choices in freight transport are mutually exclusive, but there are some where the mutual 

exclusiveness of the choices is broken. For instance, some companies may use dual sourcing for 

production (Yu et al., 2009), meaning that they would locate or purchase their production in 

more than one location and decide to produce/buy different volumes in each one. This would 

allow them to have a better mix of manufacturing flexibility, costs, risk management and speed 

of response. The discrete choice models and discrete-continuous models mentioned above do not 

cover such situations of multiple discreteness, unlike the  Multiple Discrete Extreme Value 

model (MDCEV) (Bhat, 2008, 2005).  

The MDCEV has brought an impulse to more complex decision making. The model has it 

most applications in time use models, where multiple alternatives are chosen and the amount of 

time spent in each of them. This assumes that the choice is made a priori (e.g. before the day 

starts) and the decision of all the activities are made simultaneously (horizontal choice) as 

opposed to a sequential (vertical) decision process. 

As the delivery method is mostly planned ahead, the choice of alternatives is done 

simultaneously and diminishing returns of each alternative is present. In a way, situations that in 

passenger/massive consumption choices are “vertical”, in managerial/freight context can be 

“horizontal” meaning that multiple discreteness can be present. No application in regional freight 
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was found. In cases when a strategic or planning process is performed, which is more common in 

freight transport than in passenger transport, simultaneous (horizontal) choices of several 

alternatives can be made, thus breaking the perfect substitution between alternatives that would 

otherwise hold. However, the papers do not explicitly treat the choices as part of a planning 

problem.  

In the particular case of mode and port choice, there can be cases where multiple-discreteness 

is present. At a tactical planning level (Tavasszy and de Jong, 2014), where transport tariffs, 

aggregated volumes and contracts are negotiated, some shippers may decide to plan to send 

goods through different modes and commercialization channels. The benefits from this would 

be: having more flexibility, a good average price, quick response, and lower overall supply chain 

disruption risk.  

Although this behaviour may exist, no work has been found that addresses it explicitly. This 

paper aims to introduce multiple-discreteness analysis in regional freight transport by analysing 

port and mode choice of Argentinian grain consolidators, making clear the planning nature of the 

choice.  

Agriculture is a dynamic and important sector in Argentina’s economy. It is carried out by a 

large number of scattered producers at a relatively small distance to the export ports. Some 

authors have pointed out that this short distance is one source of the low competitiveness of the 

railroad (Barbero, 2010; Regunaga, 2010) and this has a direct impact on the competitiveness of 

the Argentinian agricultural sector as a whole (Schnepf et al., 2001). 

The industries and exporting complexes are mainly located near the three main exporting 

ports. The most important one is Rosario, where 70% of the grain is exported and the main 

crushers are located. The second most important is Bahia Blanca, located in the South Atlantic 

with 16% of the grain exports. The port of Quequén is also on South Atlantic and moves 12% of 

the exports. Smaller terminals along the Paraná River export the rest of the grains. 

The inland transport is heavily road transport oriented. Around 84% of the products are 

transported this way, 14% by rail and 2% by waterway (Barbero, 2010; Cohan and Costa, 2011). 

While the road network is dense and covers most of the study area, the railroads have much less 

coverage and are heavily port oriented. 

The grain supply chain is organized as follows. After the harvest, the producers have to decide 

between using temporary facilities for storage (silobolsas), sell directly to port with a broker or 

to send it to a consolidator for the commercialization.  

The consolidators’ business model is to sell supplies, such as fertilizers, seeds and 

agrochemical products, and offer services such as technical advice, storage and sell the grains. 

The fact that they store and commercialize the grains makes them key agents in the supply chain. 

They have the capacity to generate greater volumes and in that way to access the railroad. The 

larger the producer, the less likely it is that they use consolidators as part of their 

commercialization chain. 

As harvests occur once a year per crop, it is feasible to have estimates on the volumes to be 

commercialized in advance, starting the look for potential buyers. This allows consolidators to 

plan ahead and negotiate transportation contracts and to analyse where to sell their products. 

Therefore, mode and destination volumes are probably allocated in advance and involve multiple 

alternatives. As most of the grain is sold in ports (due to export and industries being large located 

there), this involves port choice. This gives room to analyse the shipping of goods at a planning 

level considering the choice as a multiple discrete-continuous variable. 

The objectives of this paper are threefold. Firstly, it is to model and describe the port and 

mode choice of grain consolidators as a multiple discrete variable. Secondly, to compare two 
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modelling frameworks for this situation. The first is the traditional discrete behavioural 

modelling, including ranked logit and (Chapman and Staelin, 1982) the Fractional Split (FS) 

model (Papke and Wooldridge, 1996; Sivakumar and Bhat, 2002). The other framework is based 

on the Multiple Discrete Extreme Value Model (MDCEV), proposed by (Bhat, 2008). Finally, it 

is to discuss the possibility of the continuous variable to catch smaller yet important trade-offs 

between alternatives, and thus enhancing data collection techniques. To do so, a Stated 

Preference (SP) survey is used with a continuous dependent variable that allows respondents to 

choose more than one alternative and how intensively they use it.  

This paper contributes to the literature by considering the mode and destination choice at a 

planning level as a multiple discrete-continuous choice. The discrete choice alternatives are 

combinations of a mode and a destination (the port) and the continuous dimension is the amount 

of use of these combinations (in tonnes). The application of the MDCEV in this context is novel 

and can allow researchers to be more flexible in their assumptions when modelling choices at 

this level. As a consequence, more models will be available and a more accurate depiction of the 

choice maker behaviour can be obtained. Unlike earlier discrete-continuous models in freight 

transport we model a situation where multiple alternatives can be used at the same time, the 

model is directly based on micro-economic theory and simultaneous estimation is used.   

      Moreover, the paper compares the effect of assuming different types of behaviour in the 

accuracy and willingness-to-pay (WTP) measures. The former can affect volume predictions, 

while the latter can impact infrastructure evaluation, since WTP is a key parameter in Cost-

Benefit Analysis. Overall, the paper supports the idea that tactical choices can and should have 

their own framework and models typically used in choice scenarios are not directly transferable.  

The rest of the paper is organized as follows. Section 2 makes a brief literature review about 

multiple-discrete modelling and freight multiple discrete models. Section 3 describes the study 

region and the data collection process. Section 4 illustrates the method used for modelling and 

section 5 shows results and analysis. Finally, conclusions are shown in section 6. 

 

 

LITERATURE REVIEW 

The appearance of the Multiple Discrete Extreme Value model (MDCEV) (Bhat, 2008, 2005) 

has been a landmark in the formulation and usage of discrete-continuous models. Bhat in 2005  

proposed a model where, within a given time period, an individual could choose to engage in 

multiple activities. The choice modelled was which activities to participate in (discrete 

component) and for how long (continuous component). By breaking the assumption that 

alternatives are perfect substitutes he developed the MDEV that has a closed form and collapses 

to a Multinomial Logit (MNL) when only one alternative is chosen. In his paper time use choice 

is defined as “horizontal”, meaning that consumers choose a variety of alternatives 

simultaneously rather than as a result of multiple consecutive consumption decisions (“vertical” 

choices). The model can accommodate diminishing marginal returns. Bhat in 2008 reformulated 

the utility function of the MDCEV in order to clarify the role of the parameters, allow new 

correlation structures and discuss identification issues. The 2008 MDCEV version estimate the 

discrete and continuous component simultaneously, implying a single error term  (Eluru et al., 

2010). This has led to a new MDCEV proposed in 2018 that separates the baseline utilities from 

the continuous part, only for the cases where an outside good (i.e. an alternative that is always 

chosen) is present (Bhat, 2018).  

After the first application, the MDCEV was used extensively in time use models (Astroza et 

al., 2018; Bhat et al., 2006; Calastri et al., 2017a; Copperman and Bhat, 2007; Enam et al., 2018; 
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Nurul Habib and Miller, 2008; Paleti et al., 2011; Sikder and Pinjari, 2013; Spissu et al., 2009), 

for week, weekends and holidays destinations. In time use models the budget and outside good 

are straightforward, since there is a firm and unified limit (e.g. 24 hours per day) and activities 

that everybody does (e.g. sleep).  

Vehicle use is a frequent application of the model (Ahn et al., 2008; Bhat and Sen, 2006; Jian 

et al., 2017; Shin et al., 2012; Tanner and Bolduc, 2014), where the discrete dimension is which 

cars to own and the continuous decision is how much it is used (e.g. mileage). In contrast to the 

time use models, vehicle models do not have a fixed budget or a clear outside good (Eluru et al., 

2010). As a result, the mileage has to be given exogenously to the model, making the model not 

responsive in terms of the total miles driven. Additionally, it was pointed out that in vehicle use 

models the choices are not necessarily done simultaneously, but as a consequence of several 

correlated and repeated choices, breaking the “horizontal” principle originally proposed (Bhat, 

2005).  

The lack of “horizontality” also appears in other applications of the MDCEV, especially when 

individual consumers are the choice makers. In energy modelling applications (Acharya and 

Marhold, 2019; Biying et al., 2012; Yu and Zhang, 2015) the choices are (generally) which 

fuels/energy sources are used and how much they are used. Something similar happens in social 

media use/interaction (Calastri et al., 2017b; Woo et al., 2014) or in transport expenditure 

models, where the choices can be understood as a sequence of smaller (discrete) choices related 

among themselves through an external budget (Anowar et al., 2018; Bhat et al., 2015; Ferdous et 

al., 2010). 

The situation is different in products promotion (i.e. discounts) modelling (Lu et al., 2017; 

Richards et al., 2012). In this case, the assumption is made that the choice of multiple 

consumption is simultaneous at a given time, which is when the consumers are in the 

supermarket. However, it shares the problem that the budget is exogenous. 

Regarding company choices, where freight choices are contained, MDCEV can prove to be an 

interesting tool. Ko and Kim (2017) used the MDCEV to model which transport demand 

management strategies companies in Seoul use. The MDCEV was used because each 

organization can be part of several strategies simultaneously that are likely to be conscious and 

planned. Another use of the MDCEV was to model tour chaining and time of day departure, 

(Khan and Machemehl, 2017a, 2017b). These are the only applications of the MDCEV in freight 

so far to the best of our knowledge. 

Other attempts in freight of including a continuous variable in choice can be seen in single 

discrete continuous models, where only one discrete alternative is chosen together with the 

intensity of such choices, such as Abdelwahab (1998), Abdelwahab and Sargious (1992), de Jong 

and Johnson (2009), Holguín-Veras (2002) and McFadden et al., (1986). 

With an intermediate approach between the MDCEV and the single discrete models, Rashidi 

and Roorda (2018) have used a multiple discrete approach to model the fleet composition of 

companies for urban freight in Canada. The decision modelled was the vehicle type (car, van or 

truck) and the fleet size for each type as a discrete variable. The MDCEV approach was not used 

in this case because the intensity of the choice is also discrete (number of vehicles) and not 

mileage as in other vehicle use models. 

 

METHOD 

 

Data Collection 
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Stated preference (SP) surveys present the respondents with hypothetical choice situations in 

order to collect data for their preferences. The scenarios can be created by the researcher, 

allowing to test for alternatives that are currently not available. This flexibility is used in this 

paper to show rail alternatives to all respondents, independently from the actual rail availability 

in the region. Despite its advantages, SP can be subject to hypothetical bias and other types of 

respondent induced biases (e.g. non trading, lexicographic or inconsistent behaviour (Hess et al 

2010). The hypothetical nature of the data makes the SP models not reliable for forecasting due 

to scale effects, but it has been widely used to estimate WTP values.  

For this study, the country has been divided into 10 zones taking into account port hinterlands 

and railway services, as shown in figure 1. Areas that had one dominant mode or one dominant 

port have been discarded. Zone 1 contains the mixed hinterland between Quequén and Bahia 

Blanca, with Ferrosur as a rail operator. Zone 2 is the area under the influence of the port of 

Rosario and the terminals in the north of the Province of Buenos Aires. Zone 3 contains the areas 

where the hinterlands of Rosario and Bahia Blanca coincide, with FerroExpreso Pampeano 

operating the rail lines. This zone is particularly relevant because the rail operator specializes in 

grain products and is an area where these two ports compete with each other. Zone 4 contains the 

province of Cordoba, and it is within Rosario’s hinterland, and served by NCA Railway Company. 

This zone has the higher grain output of the country. Finally, Zone 5 is the region of the Paraná 

River close to Rosario with the Belgrano Cargas y Logística Railway Company attending them. 

The rest of the zones were discarded for the study. 
 

 
 

FIGURE 1. Map of Argentina with the study zones and selected grain production 
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The SP survey was conducted between May and September 2017. The commercial 

departments of grain consolidators of Zones 1 to 5 were targeted. Due to difficulties in acquiring 

contact information of producers, they were excluded from the survey. The survey was carried 

out with the support of the undersecretary of Logistic Transport and Planning of the Ministry of 

Transport of Argentina. 

From an original population of 867 possible consolidators, 467 could be contacted by e-mail 

and 127 of them were contacted by telephone. The differences between these figures are due to 

incorrect or outdated contact details, rather than a sampling procedure. The telephone calls 

consisted on an explanation of the objectives, the general method, the survey instrument and the 

dependent and independent variables. Additionally, it was made clear that the answers will be 

used for policy making by the Ministry of Transport. This consequentiality of the answers has 

proven to diminish the bias in the responses (Crastes dit Sourd et al., 2018). 58 questionnaires 

were successfully completed, which is considered a good sample size in the freight context. In 

some cases, some observations had to be dropped, but not invalidating the respondent. In all, 670 

observations (i.e. choice tasks) were used. The geographical coverage of the sample included all 

regions identified in figure 1, guaranteeing representation of the whole country’s productive 

areas.  

A Bayesian efficient design (Rose and Bliemer, 2009) was used to build a survey instrument 

with 12 choice tasks.  Each choice task consisted of a commercial situation where the 

respondents had a finite amount of products (depended on the size and the main selling product, 

both informed by the interviewee) that they had to sell to two unlabelled ports and send them 

either by train or by truck. These generated four choice options to which the interviewees could 

freely allocate a percentage of the available cargo. The ports, although unlabelled, made 

reference to the closest ports to the interviewee in order to make the variable levels closer to 

reality and thus increase the likeliness of engagement of the respondent. Figure 2 illustrates the 

choice task card and Annex I shows the experimental design specification. 
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FIGURE 2. Choice task of the SP.  

 

Each option, labelled A, B, C and D, was characterized by the Free Alongside Ship (FAS) 

price, freight price, travel time, lead-time or headway, reliability and minimum shipment size. 

All variables were tested at three levels. 

There are several studies supporting the inclusion of freight price, travel time, frequency and 

reliability in mode choices in the freight context (Cullinane and Toy, 2000; Feo-Valero et al., 

2011; Feo et al., 2011; Hoffmann, 2003; Shinghal and Fowkes, 2002; Zamparini et al., 2011). 

Regarding the FAS price, there is less evidence (Tapia et al., 2019), but it is considered 

important in the grain context because it is the main reference signal made by the exporters to the 

consolidators. The minimum shipment size was included to increase compatibility with models 

currently used by the Ministry of transport and because it is considered to be a barrier for the 

access to the rail mode. 

FAS price is the price paid to the producer at the ports. The reference taken was for wheat, 

sunflower, maize, soy and sorghum in Rosario the 09/06/2017. The alternatives were both ports 

either had the same price, or the further away paid a 2.5 or a 5% extra. 
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The trucks freight prices used were the official published ones by the truck drivers’ union 

(CATAC, 2017). Since it is a published price, it was considered unrealistic if they were changed 

so they remained constant in all choice sets. The prices for the train were set as a 67.5, 75 and 

82.5% of the truck prices. These reflected the full price from storage to destination. 

Something similar was set for travel time. A reference speed for truck of 65 km/h was taken 

and fixed for all scenarios. This speed is just a seed value does not imply actual velocity of the 

trucks. The levels for the train mode had a baseline of 30 km/h with two other levels being 90 

and 110% of that value. The time was defined as the travel time between storage and destination.  

The lead-time was defined as the maximum time the shipper had to wait for the transport 

service to arrive. As a reference for the truck, this was set as 0.5 days and for rail ranged between 

5,7 and 10 days.  Reliability was defined as the number of days that the loading time of the train 

could be delayed. The values were 0, 1 and 3 days. 

Finally, the minimum shipment size was the minimum volume that had to be sent by this 

mode in order for it to be available. It was fixed as a full truckload for the road mode (32 tons) 

and ranged between 500 tons to 1,500 tons for rail. 

The prior values for travel time, freight price, FAS price and lead-time were used from an 

earlier version of the model in Tapia et al., (2019), that was a study made with the same target 

population, only in a smaller region. For reliability, the work carried out by Larranaga et al. 

(2017) was considered. No prior for the shipment size coefficient was available, so a zero 

centered value was used. 

Normally, SP experiments offer a discrete response variable, but in this study a continuous 

variable is offered to the respondents. This way, information about small trade-offs are expected 

to be captured. For instance, a change of parameters that would shift the choice for some 

alternative from 30% towards 40% would not be necessarily enough to trigger a discrete choice 

shift, meaning some loss of information if it were a purely discrete choice.  

 

Modelling framework 

For modelling this response variable can be treated in five ways: i) following the fractional 

split model;  ii) MDCEV model; iii) discretising on the basis of highest probability (Tapia et al., 

2019); iv) discretising using a distribution and; v) using a ranked response.  

The response variable in i and ii does not need any treatment in order to be modelled, while 

iii, iv and v need to go through a discretization process. The discretization to the highest 

probability consists of allocating a discrete choice on the basis of which alternative has the 

highest stated value, as it was done in (Tapia et al., 2019). Ties were treated ad hoc in order to 

favour the choice shift from the previous choice. For example, consider the following choice: A 

= 60%; B = 10%; C = 30%; D = 0%, followed by A=50%; B=0%; C=50%; D=0%. The first 

choice by the discretization method would be A (the highest) and the second one C (so the 

information that A has lost to C the preference is not lost). In this paper, this discretization will 

be called Max. 

The other form for discretization is taking draws from a distribution for simulating the choice. 

In this paper a uniform distribution between 0 and 1 was used. Using the example above, if the 

uniform draw fell between 0 and 0.6 A would be chosen; if it was between 0.6 and 0.7, 

alternative B would be chosen and; if it fell between 0.7 and 1 alternative C was picked. For the 

second choice the intervals would be: A between 0 and 0.5 and C between 0.5 and 1. In this 

paper, this discretization will be called Uniform. Max and Uniform discretization have the same 

choices in 67.4% of the times. 
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The last method used consists in considering the response variable as an ordered response and 

generating an exploded ranking. Using the values from the example, the ranked choice would be 

A:1; B:3; C:2; D:4. For the second choice ranking would be A:1; B:2; C:1; D:2. According to the 

ranking, the choices were exploded according to the exploded ranking procedure (Chapman and 

Staelin, 1982). The exploded choice the first choice would imply three discrete choices: i) A 

from the choice set {A;B;C;D} (same situation as in Max); ii) C from the choice set {B;C;D} 

and; iii) B from the choice set {B;D}. The second choice would be exploded into two: i) A from 

the choice set {A;B;C} and; ii) C from the choice set {B;C;D}. In this paper, this discretization 

will be called Ranked. 

The Ranked, Uniform and Max model are built on the standard likelihood function of the 

discrete choice models. The Fractional Split (FS) allows to model modal split data based on the 

aggregate (zone-to-zone) data, where the dependent variable consists of the market shares of the 

modes for each origin-destination pair. Besides the application for regional freight in (Sivakumar 

and Bhat, 2002), applications in accident analysis have used this specification  (Eluru et al., 

2013; Lee et al., 2018). Please note that in our application of this specification we use data at 

disaggregate (individual firm) level. In this paper, it will be mentioned as the FS model; with a 

log-likelihood (LL) function is given by equation 1. 

 

𝐿𝐿 = ∑ 𝑃𝑟𝑜𝑝𝑗𝑖 ∗ log(𝑃𝑗𝑖)       (1) 

 

Where 𝑃𝑟𝑜𝑝𝑗𝑖 is the percentage allocated to each alternative i and 𝑃𝑗𝑖is the probability of that 

alternative to be chosen in the choice j. This LL collapses to the MNL in cases where a discrete 

choice (e.g 100% is allocated to one alternative) is made. Nested and non-nested structures were 

tested for this model. 

The second framework used was the MDCEV model. This model consists of a baseline utility 

with added satiation parameters. Due to the complex formulation of the nested MDCEV, 

correlations between alternatives were tested using an error component model (Train, 2003). The 

LL function is given by equation 2. 

 

𝐿𝐿 = ∑(
1

𝜎𝑀−1
[∏ 𝑐𝑖

𝑀
𝑖=1 ] [∑

1

𝑐𝑖

𝑀
𝑖=1 ] [

∏ 𝑒
𝑉𝑘

𝜎⁄𝑀
𝑖=1

(∑ 𝑒
𝑉𝑘

𝜎⁄𝐾
𝑘=1 )

] (𝑀 − 1)!)    (2) 

 

Where 𝑐𝑖 = (
1−𝛼𝑖

𝑒𝑖
∗+𝛾𝑖

) ,  𝑉𝑘 = 𝛽𝑧𝑘 + (𝛼𝑘 − 1)ln (
𝑒𝑘

∗

𝛾𝑘
+ 1) , 𝛽𝑧𝑘  is a vector of coefficients and 

attributes, 𝑒𝑘  the amount chosen for each available alternative k, M are the chosen alternatives, 

σ is the error scale parameter and 𝛼𝑘and 𝛾𝑘satiation parameters. The satiation parameters allow 

the model to change the marginal utility of extra consumption of the alternatives. Their effect is 

to decrease the marginal utility when the alternative is being consumed and thus can be 

interpreted as the consumer becoming more and more satiated.  

The effects of α and γ as satiation parameters are confounded in the model and cannot be 

estimated simultaneously. While γ allows corner solutions and zero consumption, α reflects the 

marginal satiation rate. In order to estimate them, either one of them have to be fixed. When α is 

fixed, a γ profile is estimated, which has the advantage of having a more straightforward 

forecasting method and interpretation. 
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In the SP, none of the alternatives was a clear favourite and none of them was always chosen. 

This makes that the MDCEV formulations that consider an outside good (that is always chosen) 

were not suitable. 

The core difference between the MDCEV and the other five models reside in its approach 

towards substitution. On one hand, the FS, Ranked, Uniform and Max assume that the 

alternatives are mutually exclusive, as all traditional single discrete choice models. On the other 

hand, the MDCEV relaxes this assumption to allow the choice of multiple alternatives 

simultaneously in a consistent “horizontal” way, as would happen in a planning scenario. The FS 

in particular has the possibility of accommodating several alternatives, but the mutual 

exclusiveness assumption can imply that the choices are vertical (i.e. sequential).  

For all models, linear and non-linear parameters in the utility function were tested. Several 

reports highlight the importance of non-linearities in the freight context (Gatta and Marcucci, 

2016; Marcucci et al., 2015). 

Observed heterogeneity was tested with the inclusion of variables related to the type of 

consolidator and its location, such as size, truck ownership. The interaction was defined as the 

product of the coefficient of the variable 𝛽 and (1 + 𝛽_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∗ 𝛿), 𝛽_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 being 

the interaction coefficient and δ the dummy for the interaction effect. This means that the 

interpretation of the interaction parameter is that of a magnifying effect. If the dummy takes the 

value of zero, the overall coefficient is 𝛽, and if it is 1 it becomes 𝛽 ∗ (1 + 𝛽𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛). When 

𝛽𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  is positive, it enlarges the effect of the variable, if negative and smaller than one, it 

diminishes it. For values below -1 the sign of the coefficient is reversed, which usually does not 

make sense econometrically. 

Random heterogeneity was modelled with the inclusion of uniform, log uniform and 

lognormal distributions of the parameters with 250 Halton draws (Train, 1999). Normal 

distributions were discarded because of being unbounded distributions, which can give either 

values with the wrong sign or problems estimating Willingness to Pay (WTP) measures (Daly et 

al., 2012b). For this matter, lognormal distributions are favoured. Generally, observed 

heterogeneity is preferred over the random one because it provides better behavioural insights. 

The panel nature of the data was considered for the estimation and for the Halton draws.  

The criteria for choosing the models were not only to have the higher LL. The parameters sign 

and microeconomic logic and behavioural insights were taken into account too. 

The key difference between the MDCEV models and the other models in this paper is the key 

assumption around the discreteness of the response variable and the mutual exclusiveness of the 

alternatives. In order to assess the effect of this assumption, the models will be compared to each 

other. 

To compare the models, the data was split into training and testing parts. The training data 

consisted of 80% of the participants, meaning that the answers for the same interviewee were on 

the same database. In total 50 rounds of random splitting were done. 

For forecasting with the model, firstly, the baseline utility is computed by simulating the 

Gumbel distributed error, ordered decreasingly and assumed it is consumed. Secondly, the 

Lagrange multiplier of the utility maximization problem is calculated and compared with the 

baseline utility function of the next highest alternative. If smaller, the second alternative is 

chosen and the step will continue to iterate until, there are no more alternatives left, or the 

Lagrange multiplier is larger than the next baseline utility. When the chosen alternatives are 

selected, the optimal consumption is estimated. The forecasting algorithm is described and 

demonstrated in detail in (Pinjari and Bhat, 2011). First the results are averaged across the draws 

for each hold out sample, obtaining mean absolute error for the continuous part and type I and II 
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errors for the discrete part. All the measures were then averaged across all 50 hold out samples. 

The measures used to compare the models are the mean absolute error per alternative (Jäggi et 

al., 2013).  

Additionally, type I and type II errors were obtained from the test sample. A type I error (false 

positive) occurs when the model allocates some percentage to the alternative but the respondent 

did not choose the alternative. Type II errors (false negatives) occurs when the model predicts 

that the alternative is not chosen, but the respondent did select it. For the discrete models, type I 

errors are equal to the times the alternative is not chosen, and type II equal to zero because it 

always gives a non zero probability for every alternative. For each test sample, both errors were 

counted and summarized as a percentage of the amount of choices.  

Willingness to pay (WTP) measures were estimated using the delta method (Daly et al., 

2012a) adapted for the mixed logit case, presented in Bliemer and Rose (2013). The method 

takes into account the error of the estimates and simulates the dimension(s) of the random 

parameter generating a WTP distribution. The main differences to other simulation methods is 

that the one in Bliemer and Rose provides symmetrical normal distributions, while other methods 

replicate the shape of the simulated data. Other simulation-based WTP measures were also 

estimated for comparison.  

 

RESULTS AND ANALYSIS 

The continuous response variable of the SP experiment was well accepted by the respondents. 

Of all, only five of them used only one alternative in all the 12 choices and of the 670 

observations, only 100 were for only one alternative. This shows that in the case of the 

experiment, the alternatives were not perfect substitutes of each other. 

Table 1 shows the results of the models for the different response variables. As expected, 

freight price, travel time and headway have a negative sign and FAS price had a positive 

influence in the utility function. In both models, the reliability and the minimum shipment size 

were not significant. Error components for the MDCEV were tested, but were found not to be 

significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  14 
 

 

TABLE 1: Model estimates 

 

 
Multiple 

discrete 
framework 

Discrete choice framework 

 MDCEV 
Fractional 
Split 

Uniform Max Ranked 

sigma 1 (Fixed) - - - - 

Alpha 0 (Fixed) 3 - - - - 

ASC_A 0 (Fixed) - - - - 

ASC_B -1.29 (-1.54) -0.92 (-2.17) -0.62 (-1.1) 
-1.22 (-

2.05) 
-0.29 (-0.4) 

ASC_C 0.03 (0.09) -0.53 (-2.15) 0.03 (0.07) 
-0.79 (-

1.95) 
-1.11 (-2.67) 

ASC_D -1.29 (-1.28) -0.94 (-1.76) 
-0.18 (-

0.25) 
-1.30 (-

1.61) 
-0.22 (-0.25) 

TIME -1.04 (-1.8) 1 
-1.37 (-3.42) 

1 

-0.90 (-
1.86) 1 

-1.2 (-
1.99) 1 

-0.93 (-1.2) 1 

LEAD TIME -0.84 (-3.92) 1 -0.11 (-4.31) 
-0.095 (-

2.87) 
-0.18 (-

4.42) 
-0.14 (-3.41) 

FREIGHT PRICE  -1.43 (-8.7) 2 1.47 (9.91) 12 
1.44 (6.85) 

1 2 

1.59 

(8.41) 12 

1.86 (11.14) 

1 2 

FAS -1.20 (-5.47) 2 
-1.60 (-7.25) 

2 

-1.55 (-6.2) 

2 

0.19 
(3.44) 

0.26 (3.76) 

FAS (Std) * -1.18 (-4.84) 0.68 (4) 0.74 (4.25) 0 (Fixed) 0 (Fixed) 

FREIGHT  PRICE 
(Std)* 

0.70 (6.82) -0.67 (-5.97) 
-0.72 (-

5.34) 
-1.12 (-

8.59) 
-1.08 (-6.59) 

Gamma_ A 2.68 (12.45) 3 - - - - 

Gamma_B 2.43 (13.18) 3 - - - - 

Gamma_C 2.90 (14.87) 3 - - - - 

Gamma_D == Gamma B - - - - 

Gamma _D * 
Own Trucks  

0.555 (1.83) 3 - - - - 

LL(0) -7850.4 -928.817 -928.817 -928.817 -3976 

LL(final) -4908.23 -757.373 -760.844 -673.837 -2562.08 
1 indicates a logarithmic transformation; 
2 Mean of the log of the distribution; coefficient sign given in the transformation; 
3 Values parametrized according to (Bhat, 2008) 
* standard deviation of the log of the distribution;  
t values given in brackets 

 

The FS model showed that the travel time and freight price have a logarithmic relation with 

the utility function, while the FAS price and lead-time had a linear parameter. Heterogeneity was 

only captured by a log uniform distribution for the freight price. Since it is a lognormal 

distribution, the coefficient sign was included in the utility function by the authors, so the fact 

that it is positive does not mean that it has a positive impact in the utility. 

It is worth mentioning that the ranked model does not have a significant parameter for travel 

time, neither in the utility space nor the WTP space. Nevertheless, it will be kept for the 

measurement of the errors in order to make the models more comparable. For the MDCEV and 
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uniform models the time parameter was significant at a 90% level of confidence and considered 

to be acceptable.  

For the MDCEV, the lead-time and the travel time had a logarithmic relation with the baseline 

utility function. Heterogeneity was captured with the inclusion of an interaction of truck 

ownership with the lead-time and the satiation parameter for the closest truck alternative and 

with lognormal coefficients for FAS price and freight price (same appreciations of the coefficient 

signs as in the FS model). 

In the satiation parameter an interesting interpretation is given by the MDCEV. All satiation 

parameters are similar in magnitude (they were tested to see if they were significantly different), 

with both truck alternatives having the same satiation level. Both alternatives related to train had 

larger values, indicating lower satiation. This means that once the train has enough utility to be 

chosen, it will be used proportionately more than the truck alternatives.  

Regarding satiation heterogeneity, if the consolidator owns trucks they would have less 

satiation for the closest port by road (alternative D). This would mean that if the consolidator 

were to use trucks, they would use them more intensively to the closest port. This would 

maximize their utilization rate of the trucks by making them do more trips.  

In general, it can be seen that the model structure of the discrete choice models is similar, 

regarding the non linearities and the way they capture heterogeneity. They show some 

differences with the MDCEV that can affect the model, depending of the objective. In order to 

compare the magnitude of the parameters WTP measurements compared.  

WTP measures were estimated for the travel time and for the lead-time. The distribution of 

the price coefficient was simulated through 10.000 draws and non linearities were evaluated at 

the mean value. The median value was used for the estimation of the delta method because it 

provides less bias towards outliers (Bliemer and Rose, 2013). Figure 3 shows the resulting 

distributions and main values of WTP for travel time for train and truck, estimated for all 

models. 
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Figure 3 WTP distributions for travel time 

 

The MDCEV showed the lowest variance of all the models, shown by the higher peaks and 

the lower interquartile range. The MDCEV also showed the lowest median value, of 0.70 

US$/ton/hour. The largest values were reported for the FS model, with a median of 1.39 

US$/ton/hour. The largest variability is given by the Max model. The medians for truck ranged 

from 1.11 to 2.53 US$/ton/hour and for train from 0.40 to 0.87 US$/ton/hour. These values are in 

line with the ones found in the literature, where Tapia et al. (2019) estimated a value of 1.49 

US$/ton/hour for the same context. Larranaga et al. (2017) and de Jong et al. (2013) reported 

values from the literature in between 0.1 to 3.4 US$/ton/hour.  

The WTP to reduce a day of lead-time can be interpreted as the WTP for a reduction in a day 

in the inventory, due to characteristics of the product involved (agricultural commodity). As 

there is a concentration of demand for storage during the harvest, a lower lead time can allow for 

a better usage of the fixed capacity. Figure 4 shows the distribution and main values for the WTP 

for lead time. 
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Figure 4 WTP distributions for lead time 

 

As it happened for the WTP for travel time the MDCEV had the lowest variability and values 

of all the models and the Max the highest. The median values for the MDCEV were 0.48 

US$/ton/day and for the FS 0.66 US$/ton/day. The ranked model, that did not have a significant 

time coefficient, showed a larger variability and values than the MDCEV. All the median values 

found are within range from the 0.99 US$/ton/day obtained by Tapia et al. (2019).  

Table 2 summarises the confidence intervals (CI) for the WTP of travel and lead time using 

the delta method to obtain the 2.5%, median (50%) and 97.5% quantiles. Even though part of the 

CI is negative for some models, still the larger part of the distributions have positive values and 

the objective of this paper is to analyse the impact of the model assumptions in WTP measures, 

rather than obtaining highly significant WTP measures. It is also worth noting that except for the 

MDCEV values, the cost coefficient is not linear, making it unsuitable for Cost-Benefit Analysis.  

The CIs were also estimated through simulation using a simulation method also suggested in 

Bliemer and Rose (2013); also see Gatta et al. (2015) specifically for small samples. It relies on 

the Krinsky and Robb (Krinsky and Robb, 1986, 1990) procedure and the method described in 

Hensher and Greene (2003) to simulate the WTP distribution and can provide asymmetrical CIs. 

The results were 50% to 300% wider CIs compared to the delta method. The percentage of 

values above 0 was larger in most cases. This percentage followed the significance of the 

time/lead time parameters, since the cost coefficient is constrained to negative values.  

 

 

 



  18 
 

 

 

 

 

 

 

TABLE 2: Confidence intervals of the WTP values 
    Quantiles Percentage of 

values >0 

  2.5% 50% 97.5% 

WTP Time FS [US$/ton/hour] -0.64 1.39 3.41 91 

WTP Time MDCEV [US$/ton/hour] -0.48 0.70 1.85 88 

WTP Time Max [US$/ton/hour] -1.55 1.09 3.73 79 

WTP Time Unif [US$/ton/hour] -0.77 0.93 2.63 86 

WTP Time Ranked [US$/ton/hour] -1.07 0.63 2.33 77 

WTP Head Prop  [US$/ton/day] -0.27 0.66 1.59 92 

WTP Head MDCEV [US$/ton/day] -0.22 0.48 1.17 91 

WTP Head Max  [US$/ton/day] -1.25 1.00 3.24 81 

WTP Head Unif  [US$/ton/day] -0.34 0.61 1.56 90 

WTP Head Ranked  [US$/ton/day] -0.74 0.62 1.97 81 

 

It could be argued that the MDCEV’s assumptions lie closer to the observed behaviour of the 

respondents since it has a framework that allows the choice maker to choose multiple alternatives 

and their intensity. By being able to reflect the behaviour more accurately, the MDCEV is also 

able to reflect the trade-offs between the variables, and thus the WTP. Moreover, the CI of the 

MDCEV is included in the CIs of the other four models, supporting this claim further. This could 

imply that the traditional discrete choices overstate the WTP values. This can bring 

consequences if the models are used for infrastructure evaluation, since the travel time and 

headway savings valuation would be lower when using the MDCEV. 

The models were also compared on a test sample. Table 3 shows the results of the errors of 

the forecasting procedures by the models ordered according to their overall accuracy. 

 

TABLE 3: Mean absolute error of the models 

 

Alternative MDCEV Ranked Uniform Max Fractional Split 

A 40.24 25.16 24.56 24.75 24.1 
B 30.95 23.87 19.6 21.46 20.02 
C 35.6 25.09 24.95 26.17 23.47 
D 29.83 17.69 19.16 18.54 18.52 

Total 34.16 22.95 22.07 22.73 21.53 

 

It can be seen that the MDCEV shows the lowest accuracy and the FS the highest, being the 

average absolute error approximately 60% higher from the MDCEV. Nevertheless, all models 

showed relatively high error rate. The relatively good performance of the FS compared to the 
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other logit choices is not a surprise because it uses all the information from the choices, 

including the small trade-offs that are not large enough to trigger a modal shift or even the 

ranked order. The ranked model was expected to capture better the information from the 

response variable, but it showed a bad model specification and performance.  

An analysis of type I and type II errors of the models can explain the bad performance of the 

MDCEV. Traditional discrete choice models always allocate some percentage to every 

alternative. As a result, the amount of false positives (type I) is equal to the times the alternative 

is not chosen and the false negatives (type II) equal zero. Table 4 shows the results of the hit rate 

analysis. 

 

TABLE 4: Type I and Type II errors of the models 

 

 MDCEV Ranked Uniform Max Fractional Split 

Type I A 20% 62% 62% 62% 62% 

Type I B 26% 69% 69% 69% 69% 

Type I C 31% 71% 71% 71% 71% 

Type I D 30% 73% 73% 73% 73% 

Average Type I 27% 69% 69% 69% 69% 

Type II A 26% 0 0 0 0 

Type II B 27% 0 0 0 0 

Type II C 20% 0 0 0 0 

Type II D 24% 0 0 0 0 

Average Type II 24% 0% 0% 0% 0% 

 

The table above provide some explanations for the lower performance of the MDCEV, shown 

by the percentage of errors relative to the total amount of choice tasks. False negatives (type II) 

bring more error than type I errors. False negatives imply that the model assigns a zero quantity 

of goods when it was effectively chosen. This makes the error to be higher than the discrete 

choice model, which allocates to every alternative a non-zero probability of being chosen. The 

proportion of type I and type II errors are balanced in average. Jäggi et al. (2013) suggested that 

the MDCEV has higher false predictions rate when less multiple choices are observed. 

In light of this weakness, Bhat (2018) proposed a new MDCEV model that amends the lack of 

accuracy in the estimation of the discrete part. So far, it only contemplates cases with an outside 

good, not suitable for the present work. 

Despite the lower accuracy of the MDCEV, it has interesting features that makes it attractive 

from a normative standpoint. It gives insights that improve the behavioural understanding of 

satiation parameters, the ones that suggest the existence of multiple-discreteness in this regional 

freight scenario.  

 

CONCLUSION 

Mode and destination choice is normally considered a purely discrete one. Nevertheless, there 

are examples where this decision could be analysed considering that the choice-maker chooses 

more than one alternative. This could be the case for choices at a tactical or strategic level such 

as dual sourcing or the allocation of shipments into different modes. This multiple allocation can 

bring the organization a greater mix in overall cost, flexibility offered to the clients and reduce 
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the overall risk of the transaction. Despite the existence of these situations, no work has been 

found with this focus.   

In this paper, mode and port choice was successfully modelled as a discrete-continuous 

choice, considering de mode/port choice as a discrete choice and the amount of cargo allocated 

to each alternative as a continuous part. This suggests the possibility of having multiple-

discreteness in the regional freight context. The main assumption is that in the case study the 

mode and port is made first at an aggregated planning level, where the choice maker can decide 

the mix of delivery times, cost and other level of service characteristics. By extrapolating this 

assumption, the framework applied in this paper can be used to expand the tools available for 

modelling freight transport. This can allow researchers to use more flexible frameworks with 

better behavioural ties to model freight planning, which constitutes the main contribution of the 

paper. Additionally, the use of a continuous variable can potentially provide an effective way of 

capturing more information, even when using a discrete choice framework (such as the FS). 

A SP survey was carried out with 58 respondents and a wide geographical coverage. A 

continuous response variable was used, allowing respondents to allocate freely their cargo 

among four alternatives, each combining two unlabelled ports and two modes (truck and rail). 

This flexibility was widely used among the interviewees, having most of them choosing more 

than one alternative at least at one point. This also suggests that the alternatives were not 

mutually exclusive. Using this continuous variable allowed to extract more information per 

response because it allowed little trade-offs that would otherwise be masked in a purely discrete 

choice. 

A multiple discrete and several discrete choice frameworks were used for this data. For the 

MDCEV and FS no treatment of the data was needed and three discretization alternatives were 

tested (Max, Uniform and Ranked). All models included travel time (not significant for the 

ranked model), lead-time, freight price and FAS price as explanatory variables. Random 

heterogeneity was captured by lognormals in the freight cost for all models and in the FAS price 

for the MDCEV, FS and Uniform. To our knowledge, this is the only application so far of the 

MDCEV in freight regional context. The models with a discrete choice framework shared the 

logarithmic transformation for travel time and freight cost, while the MDCEV had 

transformations for the freight cost and lead time. 

The MDCEV offers a framework that can reflect satiation patterns. It is observed that higher 

satiation occurs for truck compared to rail. The heterogeneity captured in the MDCEV has been 

related with the ownership of truck. These show a lower satiation if the alternative of the truck to 

the closest port is chosen.  

WTP values were within the expected range, both for time and for lead-time. In general, the 

WTP values were higher for the discrete choice models than the MDCEV. This paper argues that 

the assumptions of the MDCEV are closer to the behaviour of the choice makers in this situation 

and probably better reflects the trade-offs (and thus the WTP) of the situations. Therefore, it 

could be an indication that the fractional split model overstates the value of the WTP. As a 

consequence, some of the values used for infrastructure appraisal within the welfare economics 

could be overstating the benefits of travel time and service savings.  

Regarding model performance, the discrete choice models show better accuracy. This could 

be because of the relatively lower performance in the discrete forecast of the MDCEV. There is 

evidence in previous research that suggests that a low number of simultaneously chosen 

alternatives, as is the case here, can be responsible for this. Nevertheless, this model brings 

interesting insights of the satiation patterns in the context of multiple-discreteness. In this way, it 

is still a useful tool to understand freight behaviour.  
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This results highlight the importance of having clear the objectives of the model beforehand. 

Discrete choice models are simpler and show a (relative) good predictive performance. However, 

MDCEV has a better theoretical and econometrical performance, giving useful behavioural 

insights and probably more accurate WTP measures.  

Overall, this works uses an SP that allowed to use more information from the respondents by 

introducing a continuous variable and modelled as a discrete-continuous phenomenon using the 

MDCEV, a relative innovation in the regional freight modelling studies. 

As mentioned before, the shippers can obtain different mixes of level of services, average 

costs and reduce the overall risks by choosing more than one alternative. However, this work 

does not address this in particular and the study of how this affects decisions at a planning level 

is an interesting course of action for future research.  
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Appendix I 

 

The values used for the experimental design were coded from 0 to 2 with the values shown 

in Table I.1 for mode variables and Table I.2 for port variables. The values that were sent to the 

interviewees were customized using the actual values for the closest port. Table I.3 shows the 

design of each of the scenarios for the train alternatives (A and C) and Table I.4 shows them for 
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truck alternatives (B and D). It should be noted that the truck option was used as the reference 

alternative for mode and the closest port as reference for FAS price. 
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Table I.1 
 Freight Price for 

train 
Freight Price 
for truck 

Travel Time for 
rail  

Travel Time for 
truck 

Lead 
Time 
for rail 

Lead Time 
for truck 

Reliability 
for rail 

Reliability 
for Truck 

Minimum 
shipment 
size for rail 
(tn) 

Minimum 
shipment 
size for 
truck (tn) 

0 67.5% of current 
Truck price 

100% of 
truck price 

90% of travel 
time at 30km/h 

100% of travel 
time at 65km/h 

5 days 0.5 days 0 days 0 days 500 32 

1 75% of current 
price 

100% of 
truck price 

100% of travel 
time at 30km/h 

100% of travel 
time at 65km/h 

7 days 0.5 days 0 - 1 days 0 days 1000 32 

2  82.5% of current 
price 

100% of 
truck price 

110% of travel 
time at 30km/h 

100% of travel 
time at 65km/h 

10 days 0.5 days 0 - 3 days 0 days 1500 32 

 

Table I.2  
 FAS price for closest port FAS price for further port 

0 0% less of the current price in Rosario 5% more of the current price in Rosario 

1 0% less of the current price in Rosario 2,5% more of the current price in Rosario 

2 0% less of the current price in Rosario 0% more of the current price in Rosario 
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Table I.3 
  A C 

Choice 
situation 

Lead 
Time 

Time Freight 
Price 

FAS 
price 

Shipment 
Size 

Reliability Lead 
Time 

Time Freight 
Price 

FAS 
price 

Shipment 
Size 

Reliability 

Example 1 1 1 1 1 2 2 1 1 1 1 1 

1 0 2 2 0 0 1 2 0 0 1 1 1 

2 1 0 2 2 0 2 1 2 0 1 1 0 

3 0 0 2 0 1 1 2 2 0 1 0 1 

4 2 1 2 1 0 0 0 1 0 1 1 2 

5 2 1 1 0 1 0 0 1 1 1 0 2 

6 1 0 1 2 1 1 1 2 1 1 0 0 

7 1 2 1 2 0 0 1 0 1 1 1 2 

8 1 2 0 1 0 2 1 0 2 1 1 0 

9 2 0 0 0 0 2 0 2 2 1 1 0 

10 0 1 1 2 1 1 2 1 1 1 0 1 

11 0 2 0 1 1 2 2 0 2 1 0 1 

12 2 1 0 1 1 0 0 1 2 1 0 2 
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Table I.4 

  
 B D 

Choice 
situation 

Lead 
Time 

Time Freight 
Price 

FAS 
price 

Shipment 
Size 

Reliability Lead 
Time 

Time Freight 
Price 

FAS 
price 

Shipment 
Size 

Reliability 

Example 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 0 1 1 1 1 1 1 1 1 

2 1 1 1 2 1 1 1 1 1 1 1 1 

3 1 1 1 0 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 1 1 1 1 1 1 

5 1 1 1 0 1 1 1 1 1 1 1 1 

6 1 1 1 2 1 1 1 1 1 1 1 1 

7 1 1 1 2 1 1 1 1 1 1 1 1 

8 1 1 1 1 1 1 1 1 1 1 1 1 

9 1 1 1 0 1 1 1 1 1 1 1 1 

10 1 1 1 2 1 1 1 1 1 1 1 1 

11 1 1 1 1 1 1 1 1 1 1 1 1 

12 1 1 1 1 1 1 1 1 1 1 1 1 

 

 


