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Abstract 

An increasing amount of research is dedicated to the consideration of tour formation in freight 

transportation demand models. While empirical tour formation models so far have been starting from 

limiting assumptions about the resulting trips, we develop a generalized shipment-based model. We 

formulate a random utility model embedded in an iterative algorithm to construct tours through the 

incremental allocation of shipments. It considers different objectives and constraints and acknowledges 

the difference between commodity, vehicle and location types. Parameters are estimated on a large and 

comprehensive shipment database. The model reproduces observed tour patterns well for the given set of 

shipments.  

Keywords: freight transportation modeling, tour formation, discrete choice model, road transport survey 

 

 

mailto:thoen@significance.nl


2 

 

1. Introduction 

One of the planning activities that firms undertake to prepare freight movements is tour formation. Here, 

planners combine pick-up and delivery locations for several shipments into round trips. Tour formation is 

becoming a well-established component in descriptive freight simulation models (Hunt & Stefan, 2007; 

Sánchez-Díaz et al., 2015; de Bok et al., 2018). Incorporating tour formation in such models is necessary 

as vehicle trips and commodity flows do not necessarily have matching ODs (Roathanachonkun et al., 

2007; Holguín-Veras et al., 2014). 

Freight models can have a trip-based or a commodity-based architecture (see e.g. Holguín-Veras & 

Thorson, 2000). Until now, tour formation models have been mostly trip-based. An important issue with 

these models which limits their predictive capability is that assumptions need to made about the outcome 

of the tour building process, before the actual tours are built. These may concern the number of stops, the 

average payload, the routes followed, or the number of tours starting from a region. The few shipment-

based models that do exist are limited in their empirical validity and have not provided results yet that are 

generalizable to broader freight markets.  

The main focus and contribution of this paper is a shipment-based tour formation model, which is 

estimated on a large and comprehensive dataset of shipment and freight trip data. The dataset contains the 

company specific observations (also called microdata) of movements from the national road freight survey 

produced by Statistics Netherlands. It includes different types of commodities and logistical activities 

including manufacturing, retail, transshipment and distribution.  

The paper is organized as follows. Section 2 provides the literature review of tour formation modeling and 

defines the knowledge gap that our study aims to contribute to fill. Section 3 describes the tour formation 

model, while Section 4 introduces the data that allowed to estimate the model. In Section 5 the results of 

the estimation are presented and interpreted. Section 6 reports on additional validation work and on a 

sensitivity analysis. Conclusions and recommendations for future work are presented in Section 7.  
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2. Literature review and research gap 

Different descriptive modelling approaches are available in the literature that include tour formation. We 

distinguish between two lines of work: (1) mathematical optimization based approaches and (2) behavioral 

choice model based approaches.   

Mathematical optimization based approaches apply the Vehicle Routing Problem (VRP), as also used by 

firms for tactical planning purposes (e.g. Boerkamps & van Binsbergen, 1999; Taniguchi & van der 

Heijden, 2000; Wisetjindawat et al., 2006; Polimeni et al., 2010; Anand et al., 2014). As VRPs are used to 

predict tours, one has to assume that the model sufficiently reproduces the decision-maker’s behavior and 

that constraints can be specified adequately. To the best of our knowledge, the validation of this 

assumption has only been addressed in one study, albeit not in a shipment-based setting. You et al. (2016) 

apply inverse optimization based on GPS truck diary data of the San Pedro Bay Ports in California, USA. 

Validation is based on visual comparisons between modelled and observed tours. The authors do not 

report any quantitative measures of fit and parameters are not calibrated in a way in which statistical 

significance can be checked. Finally, the approach is computationally too heavy to be applied in a large 

scale urban freight model.  

Choice modelling approaches build on random utility theory and provide a statistical framework for the 

estimation of behavioral parameters in models, in a way that these replicate real-life choices. Econometric 

techniques allow to test hypothesized behavioral rules empirically, generalize findings to a population and 

control for the correlation between predictors. The difficulty of applying choice models for the tour 

formation activity is that it is not possible to narrow down tour formation to a single choice, which can be 

easily observed in practice or reconstructed in choice surveys. Therefore, in the literature, different 

approaches have been proposed which model tour building with approximate choices. Hunt & Stefan 

(2007) pioneered an approach of stepwise descriptive tour formation modeling with an application to the 

city of Calgary, Canada. Firstly, in their method, the number of tours originating in each zone is estimated. 

Secondly, vehicle type and tour purpose are chosen. Thirdly, the tour is built up iteratively by choosing 
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next stop locations until the choice is made to return to the home base. Since number of tours, vehicle 

types and tour purposes are chosen before the tour formation, the model cannot be classified as shipment-

based, however. Raothanachonkun et al. (2007) propose a similar incremental tour building algorithm to 

convert aggregate commodity flows to vehicle tours. However, their approach lacks an empirical 

foundation based on firm-level data; tour decisions are modelled deterministically based on average 

payloads.  

Nuzzolo et al. (2012) and Outwater et al. (2013) develop models with behavioral components that extend 

the above approach based on shipment data. Nuzzolo et al. (2012) propose a model for restocking tours for 

retail shipments. Nuzzolo & Comi (2014) present an application of this model in Rome, Italy. In their 

method, tour formation starts by deciding for each shipment the number of trips of the tour that it will be 

part of. After that, the tours are constructed with a ‘next stop location’ MNL choice model. Ruan et al. 

(2012) use commercial vehicle data from Texas, USA to estimate an MNL model for the number of stops 

and tour pattern, i.e. the number of tours required to deliver all shipments. Outwater et al. (2013) apply 

this model in a shipment-based context in their framework for Chicago, IL, USA. Geographically close 

shipments with the same tour pattern and number of stops are grouped into tours using a hierarchical 

clustering method, after which a nearest neighbor search is used to construct the sequence of locations. 

Only tours that distribute food and manufactured goods from a central warehouse are modeled in their 

study. The scope of these applications is limited to retailer replenishment tours and tours that distribute 

food and manufactured goods from a central warehouse. Additionally, the assumption that the number of 

stops is chosen before tours are constructed is questionable. In reality the number of stops is an outcome 

of the process of grouping shipments into tours. Therefore, these models are not strictly shipment-based. 

To conclude, to the best of our knowledge, there is no descriptive shipment-based tour formation model, 

that has been validated for multiple goods types or location types and can thus be applied in a general 

urban freight model. Our contribution aims to help to fill this gap with a model built on a large dataset of 

carrier and shipment microdata in the Netherlands. We present the approach in the next section.  
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3. The tour formation model 

The objective is to model the assignment of shipments to tours in a way that is both effective, i.e. 

reproducing the observed logistics patterns, and - given the context of a large scale urban freight model -  

efficient, in terms of calculation times. The choice problem is formulated as a sequence of tour-building 

choices by analogy to the approach of Hunt and Stefan (2007). Adding shipment selection, however, we 

now re-frame this approach as a shipment-based model. This allows us to take into consideration a number 

of logistical constraints, such as the size of shipment or vehicle, and the available set of shipments to build 

tours with. In our model, carriers build tours by repeatedly selecting shipments from a set and adding them 

to build a tour, until this tour is long enough. The two choices modeled are (1) whether a tour can be 

completed or not; adding, in the latter case, an additional shipment (the “End Tour” choice) and (2) which 

shipment to add to the tour from those not yet served (“Select Shipment” choice). Figure 1 shows the flow 

of the overall tour formation model (notations as listed in Table 1). We discuss the two submodels in more 

detail below.  

Table 1. Notations  

c Carrier index 

t Tour index 

i Shipment index, denotes the iteration of the formation of a tour in which the allocated shipment was added to the tour 

j Shipment alternative index, indicates the position of a yet to allocate shipment in the choice set to add to a tour 

𝐶𝑖
𝐸𝑇 

Alternative specific constant for ending the tour in the End Tour (ET) choice model 
 

𝛽𝑟𝑖
𝐸𝑇 Estimated parameter for the rth attribute in the utility function of the ET choice model 

𝛽𝑟
𝑆𝑆 

Estimated parameter for the rth attribute in the utility function of the SS choice model 

 

𝑛𝑖
𝐸𝑇  The number of attributes in the utility function of the ET choice model 

𝑛𝑆𝑆 The number of attributes in the utility function of the Select Shipment (SS) choice model 

𝑠𝑐𝑡𝑖𝑗  jth shipment in the choice set of shipments which can be added to tour t by carrier c in iteration i of forming the tour 

𝑆′𝑐𝑡𝑖  The shipment that was chosen from  the choice set and added to tour t by carrier c  in iteration i of forming the tour 

𝑈𝑐𝑡𝑖
𝐸𝑇  Utility of ending tour t of carrier c in iteration i of forming the tour 

𝑈𝑠𝑐𝑡𝑖𝑗
𝑆𝑆  Utility of adding shipment sctij to tour t of carrier c in iteration i of forming the tour 

𝑥𝑟𝑐𝑡𝑖
𝐸𝑇  The value of the rth attribute in the utility function of the ET choice model in iteration  i of forming tour t of carrier c 

𝑥𝑟𝑠𝑐𝑡𝑖𝑗
𝑆𝑆  The value of the rth attribute in the utility function of the SS choice model for shipment sctij 

𝛼 The value of the proximity constraint [km] 
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𝛾 The number of shipment alternatives in the choice set of the SS choice model 

  

 

Figure 1. Flow diagram of the proposed tour formation model.  



7 

 

(1) 

3.1 The End Tour model 

The function of the End Tour model is to construct the sequence of locations to visit by adding shipments, 

until the tour can be completed. We consider shipments transported for a whole day for individual carriers, 

knowing the portfolio of shipments of each carrier as well as the delivery dates of shipments. The choice 

model involves a sequence of binary choices for next stops in a tour, considering whether to add a next 

stop to the tour or not. The ET choice model has a binary dependent variable with the categories ‘0 = 

continue adding shipments to tour’ and ‘1 = end tour here’. The utility of ending the tour is calculated as 

follows: 

𝑈𝑐𝑡𝑖
𝐸𝑇 =  𝐶𝑖

𝐸𝑇 +  ∑ (𝛽𝑟𝑖
𝐸𝑇 ∗

𝑛𝑖
𝐸𝑇

𝑟=1 𝑥𝑟𝑐𝑡𝑖
𝐸𝑇 ) 

The list of attributes (𝑥𝑟𝑐𝑡𝑖
𝐸𝑇 ) in the utility function of the ET choice model includes characteristics of the 

tour (e.g. tour duration), vehicle (e.g. capacity utilization), visited locations (e.g. zones with transshipment 

or distribution activities) and goods to move (e.g. goods type). We take a data-driven econometric 

approach to determine the final list of explanatory variables, based on the rich dataset available about 

freight trip and shipment characteristics. Therefore, we report and interpret the attributes identified (𝐶𝑖
𝐸𝑇 

and 𝛽𝑟𝑖
𝐸𝑇) after having introduced the dataset, in section 5.  

To calculate tour duration, we have to re-construct the sequence of visiting the loading and unloading 

locations of all shipments that have been allocated so far to the tour. A random shipment in the set is 

selected as the first shipment of a new tour. An alternative approach could be to add a third choice model 

which determines the starting shipment of choice. This will be the subject of later research. To identify 

subsequent stops, we use a nearest neighbor search approach - after each location, the nearest remaining 

location is visited. We developed two alternative search algorithms: the first visits all loading locations 

before unloading locations are visited, while the second visits alternately loading and unloading locations. 

Using more advanced algorithms to solve a Traveling Salesman Problem could lead to more efficient 

sequences (AlSalibi et al., 2013). However, the computational efficiency of the nearest neighbor search is 
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(2) 

of large importance in the context of a real scale urban freight model. With our nearest neighbor search the 

proposed tour formation algorithm takes three minutes to form tours for approximately 39,000 shipments, 

using a PC with an i7 processor and 16.0GB RAM.  

When constraints are violated, the tour is ended regardless of the probability calculated with the ET choice 

model. Three types of logical constraints are specified, which may cause the tour to end: (1) proximity, (2) 

vehicle capacity, and (3) work shift constraints. Firstly, if there are no non-allocated shipments left within 

a radius of α km to the tour as constructed so far, then the tour is ended because all non-allocated 

shipments would require a long additional time. Secondly, because of regulations and physical limitations, 

the total transported weight may not exceed the vehicle capacity. Thirdly, the tour is ended after nine 

hours to acknowledge work shift constraints. Finally, as concrete and cement shipments only have direct 

tours (i.e. tours  with one shipment) this commodity causes tours to end immediately. 

3.2 The Select Shipment model 

If the tour is not ended, the Select Shipment (SS) choice model is used to select which shipment is added 

to the tour. The SS choice model is a multinomial logit choice model with a choice set of γ shipments as 

candidates. The utility of selecting shipment 𝑠𝑐𝑡𝑖𝑗  is calculated as follows: 

𝑈𝑠𝑐𝑡𝑖𝑗
𝑆𝑆 =  ∑ (𝛽𝑟

𝑆𝑆 ∗ 𝑥𝑟𝑠𝑐𝑡𝑖𝑗
𝑆𝑆 )𝑛𝑆𝑆

𝑟=1  

The attributes (𝑥𝑟𝑠𝑐𝑡𝑖𝑗
𝑆𝑆 ) in the utility function of the SS choice model are related to the goods type of the 

shipment and the efficiency with which the shipment can be added to the tour. As with the End Tour 

model, the choice of parameters was driven by the available data and econometric analysis. We report and 

interpret the parameters (𝛽𝑟
𝑆𝑆) of the SS choice model after the introduction of the dataset, in Section 5.  

For constructing the set of candidate shipments, we distinguish between 3 types of choice sets: the 

universal choice set (UC), the feasible choice set (FC), and the consideration choice set (CC). This allows 

us to remove shipments that violate constraints and to ensure a reasonable choice set size for 



9 

 

computational efficiency. The UC consists of all shipments of the same carrier and day. The FC is a subset 

of the UC that respects constraints (such as vehicle capacity), while the CC is a randomly sampled subset 

of the FC with a fixed number of alternatives γ. To be consistent with the constraints in the ET procedure, 

we define the following types of constraints that guide the formation of the FC: (1) proximity, (2) 

commodity type, and (3) vehicle capacity. Shipments are removed from the choice set when they are not 

located within a radius of α km of the tour locations, when the goods type has no tours (in our application, 

mostly concrete/cement), and when the shipment causes the total transported weight to exceed the vehicle 

capacity.  

4. The carrier and shipment database 

For the development of the model, we use the carrier survey data collected by Statistics Netherlands 

(CBS). A large amount of data is available, about 2.6 million shipments from 2013 to 2015. Carriers and 

own-account shippers are legally obliged to report transported shipments if they are part of the CBS 

sample and can do so digitally, using their Transport Management System (see for more detail e.g. de Bok 

et al., 2018). The data are listed as separate shipments and include an association between shipments and 

tours. The definition of a tour is unique compared to definitions found in other studies. In the data, a tour 

starts at the location where the first shipment is loaded into an empty vehicle, and a tour ends at the 

location where the vehicle turns empty or at the home base location. Consequently, empty trips are not 

reported, and when a vehicle turns empty before picking up its next shipment, a new tour record is started. 

In addition to shipment data, we use land use data (CBS, 2015), employment data (CBS, 2017), and travel 

time data (off-peak travel times and distances from the Dutch NRM-West transportation model). Land use 

data is used to distinguish urban and retail zones, while employment data provides the information to 

determine which zones have transshipment and goods distribution activities. We distinguish zones at the 

very detailed postal code level of ‘buurten’, a Dutch administrative zonal classification with an average 
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zone size of approximately 3.5 km2. As not all attributes needed for our model are completed in the survey 

for all records, 515,810 valid shipment records of the approximately 2.6 million remain for our analyses.  

Table 2 provides the descriptive statistics of the dataset. We can see that the largest portion of tours is 

direct (92%), i.e. with only a single destination per tour. There is little literature to compare our numbers 

with. Khan & Machemehl (2017) find only 34% of direct tours in their dataset of 338 trucks in Central 

Texas, USA. We expect that this is due to the aforementioned definition of a tour and the large share of 

bulk concrete/cement shipments in our dataset. Due to large shipment sizes and a high time-sensitivity, 

multiple-stop tours are often not feasible (Khan & Machemehl, 2017). Additionally, relatively short 

distances are observed because we only analyze tours within the Netherlands. Table 3 shows for which 

goods, vehicles, and locations, direct tours are observed most often. The analyses have guided our search 

for explanatory variables in the model during the estimation. We report these results in the next section.  

Table 2. Descriptive tour statistics.    Table 3. Direct tour characteristics 

Tour characteristics Frequency (tours) 
 Tour characteristics Percentage of 

direct tours 

Number of stops  Average 92.4% 

1-2 (direct) 365905 (92.4%)   Average (excl. concrete) 86.2% 

3-5 18538 (4.7%)  Concrete/cement 100.0% 

6-10 10008 (2.5%)  NSTR goods type (excl. concrete) 

>10 1361 (0.3%)  0: agricultural 73.1% 

Tour distance bands [km]  1: food & fodder 64.1% 

0-20 172341 (43.5%)  2-5: fuels, oils, metals 96.9% 

20-40 82995 (21.0%)  6: construction materials 97.7% 

40-120 62614 (15.8%)  7: manure/fertilizers 77.0% 

120-200 38019 (9.6%)  8: chemical products 95.2% 

≥200 39843 (10.1%)  9: machinery and other 84.1% 

Concrete/cement 179468 (45.3%)  Vehicle type (excl. concrete) 

NSTR goods type  Truck 72.9% 

0: agricultural 9541 (2.4%)  Truck + trailer 96.4% 

1: food & fodder 20617 (5.2%)  Tractor + trailer 85.3% 

2-5: fuels, oils, metals 746 (0.2%)  Other/special vehicle 97.3% 

6: construction materials 45279 (11.4%)  Any location in tour (excl. concrete) 

7: manure/fertilizers 457 (0.1%)  Transshipment loading 96.4% 

8: chemical products 210151 (53.1%)  Transshipment unloading 96.0% 

9: machinery and other 109021 (27.5%)  DC loading 68.5% 

Vehicle type  DC unloading 70.4% 

Truck 194875 (49.4%)  Urban zone 61.0% 

Truck + trailer 37660 (9.5%)  Retail zone 72.0% 

Tractor + trailer 160049 (40,6%)    

Other/special vehicle 2134 (0.5%)    

Any location visited in tour    

Transshipment 102679 (25.9%)    

DC 176249 (44.5%)    
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Urban zone 146098 (36.9%)    

Retail zone 48164 (12.2%)    

 

5. Estimation results 

This section presents the estimated ET and SS choice models. We distinguish between three types of 

explanatory variables: (1) instrumental variables, (2) location variables, and (3) vehicle/goods type 

variables. Variables were added consecutively to the models and removed when the p-value was higher 

than 0.05, or when multicollinearity was found. Instrumental variables were added first; these reflect the 

decision-making process of a transportation planner and are most intuitive. We tested the square root, the 

natural logarithm, and the square of non-categorical variables in order to investigate non-linear effects. 

The non-linear specification was chosen if it lead to the highest pseudo-R2 and if the non-linearity of the 

effect was clearly explicable. The ET choice model is estimated separately for the first shipment and for 

later shipments, because it was observed that the majority of the tours ended after the first shipment; 

different effects can explain the two ET choices.  

For the purpose of estimating the ET choice model we assume that a complete tour (i.e. a tour including 

all its listed shipments) is ended (ET=1) and a sub tour (i.e. a tour with only a subset of its listed 

shipments) is not ended (ET=0). Four model variations (A to D) (Table 4) are used for model estimation. 

In Model A to C we vary the choice set size (γ=6 or γ=11) and the rigidity of the proximity constraint 

(α=100km or α=150km), because these model specifications are more difficult to define intuitively than 

operational constraints such as vehicle capacity utilization. The observations of fifty percent of the days in 

the data are used to estimate Model A to C. All carriers provide shipments for the estimation data sets of 

Model A to C. Model D tests how results differ when data of only 50% of the carriers are used for 

estimation.  
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Table 4. Specification of model variations A to D. 

Model Proximity constraint (α) Choice set size (γ) Data used for estimation 

A <100km 6 50% of days 

B <100km 11 50% of days 

C <150km 11 50% of days 

D <100km 6 50% of carriers 

 

5.1 End Tour choice model  

Tables 5 and 6 present respectively the estimation results of the ET first shipment model and the ET later 

shipments model. A positive parameter leads to higher utility and probability of ending the tour.  

Table 5. Estimation results ET first shipment.  Table 6. Estimation results ET later 

shipments.  

(cells present the estimated Beta and standard error) 

ET first shipment A, B C D   ET later shipments A, B C D 

R2
Nagelkerke 0.442 0.439 0.570   R2

Nagelkerke 0.292 0.293 0.186 

-2 LL 47315 55186 55866   -2 LL 37894 39933 62022 

Percentage correct 84.8 85.3 87.8   Percentage correct 81.8 81.6 75.1 

N 75255 90000 99273   N 44618 46336 59869 

𝐶𝑖=1
𝐸𝑇          Constant 

1.684 

(0.029) 

1.473 

(0.027) 

1.681 

(0.024) 
  𝐶𝑖>1

𝐸𝑇           Constant 
-2.526 

(0.062) 

-2.547 

(0.060) 

-2.516 

(0.054) 

𝛽𝑟=1,𝑖=1  
𝐸𝑇

 
-1.698 

(0.037) 

-1.112 

(0.030) 

-2.403 

(0.034) 
  𝛽𝑟=1,𝑖>1  

𝐸𝑇  TD 
0.386 

(0.014) 

0.364 

(0.014) 

0.449 

(0.012) 

𝛽𝑟=2,𝑖=1  
𝐸𝑇

  (W/C)2 5.471 

(0.102) 

6.022 

(0.098) 

5.258 

(0.088) 
  𝛽𝑟=2,𝑖>1  

𝐸𝑇   W/C 
3.286 

(0.057) 

3.285 

(0.055) 

3.122 

(0.048) 

𝛽𝑟=3,𝑖=1  
𝐸𝑇  anyTS 

1.588 

(0.037) 

1.484 

(0.035) 

2.354 

(0.037) 
  𝛽𝑟=3,𝑖>1  

𝐸𝑇   prox 
0.009 

(0.001) 

0.008 

(0.000) 

0.008 

(0.000) 

𝛽𝑟=4,𝑖=1  
𝐸𝑇  anyDCload 

-0.578 

(0.026 

-0.517 

(0.024) 

-0.942 

(0.025) 
  𝛽𝑟=4,𝑖>1  

𝐸𝑇   lnstops 
-0.911 

(0.042) 

-0.841 

(0.041) 

-0.828 

(0.036) 

𝛽𝑟=5,𝑖=1  
𝐸𝑇  anyDCunload 

-0.475 

(0.026) 

-0.450 

(0.024) 

-0.765 

(0.025) 
  𝛽𝑟=5,𝑖>1  

𝐸𝑇   anyTS 
0.526 

(0.047) 

0.545 

(0.046) 

0.450 

(0.040) 

𝛽𝑟=6,𝑖=1  
𝐸𝑇  anyURB 

-0.461 

(0.038) 

-0.605 

(0.036) 

-0.499 

(0.037) 
  𝛽𝑟=6,𝑖>1  

𝐸𝑇   anyDCload 
-0.191 

(0.036) 

-0.179 

(0.035) 

-0.281 

(0.031) 

𝛽𝑟=7,𝑖=1  
𝐸𝑇  

     vehicle type [0: truck] 

-1.295 

(0.039) 

-1.370 

(0.037) 

-1.684 

(0.039) 
  𝛽𝑟=7,𝑖>1  

𝐸𝑇   anyDCunload 
0.094 

(0.036) 

0.078 

(0.035) 

-0.150 

(0.031) 

𝛽𝑟=8,𝑖=1  
𝐸𝑇  

     [1: truck + trailer] 

1.850 

(0.049) 

1.980 

(0.045) 

2.508 

(0.047) 
  𝛽𝑟=8,𝑖>1  

𝐸𝑇   anyURB 
-0.145 

(0.032) 

-0.175 

(0.032) 

-0.036 

(0.027) 

     [2: tractor + trailer] - - -   
𝛽𝑟=9,𝑖>1  

𝐸𝑇  
     vehicle type [0: truck] 

-1.968 

(0.061) 

-1.968 

(0.058) 

-2.354 

(0.059) 

     [3: other/special] - - -   
𝛽𝑟=10,𝑖>1  

𝐸𝑇  
      [1: truck + trailer] 

-0.954 

(0.088) 

-1.003 

(0.086) 

-0.845 

(0.085) 

𝛽𝑟=9,𝑖=1  
𝐸𝑇  

     goods type [0: agricultural] 

-0.736 

(0.047) 

-0.881 

(0.044) 

-0.271 

(0.037) 
       [2: tractor + trailer] - - - 

𝛽𝑟=10,𝑖=1  
𝐸𝑇  

     [1: food & fodder] 

-0.659 

(0.032) 

-0.808 

(0.029) 

-0.672 

(0.037) 
       [3: other/special] - - - 

𝛽𝑟=11,𝑖=1  
𝐸𝑇  

     [2-5: fuels, oils, metals] 

1.495 

(0.337) 

1.298 

(0.324) 

1.121 

(0.311) 
  

𝛽𝑟=11,𝑖>1  
𝐸𝑇  

     goods type [0: agricultural] 

2.226 

(0.059) 

2.203 

(0.056) 

2.182 

(0.045) 

𝛽𝑟=12,𝑖=1  
𝐸𝑇  

     [6: construction materials] 

1.452 

(0.058) 

1.472 

(0.051) 

2.253 

(0.048) 
  

𝛽𝑟=12,𝑖>1  
𝐸𝑇  

      [1: food & fodder] 

0.871 

(0.035) 

0.873 

(0.033) 

0.546 

(0.031) 
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𝛽𝑟=13,𝑖=1  
𝐸𝑇  

     [7: manure/fertilizers] 

0.713 

(0.253) 
- 

0.878 

(0.237) 
        [2-5: fuels, oils, metals] - - - 

𝛽𝑟=14,𝑖=1  
𝐸𝑇  

     [8: chemical products] 

0.583 

(0.045) 

0.530 

(0.042) 

1.821 

(0.053) 
  

𝛽𝑟=13,𝑖>1  
𝐸𝑇  

      [6: construction materials] 

0.556 

(0.081) 

0.538 

(0.078) 

0.396 

(0.068) 

     [9: machinery and other] - - -   
𝛽𝑟=14,𝑖>1  

𝐸𝑇  
      [7: manure/fertilizers] 

-1.105 

(0.327) 

-1.702 

(0.289) 

-0.888 

(0.244) 

      
𝛽𝑟=15,𝑖>1  

𝐸𝑇  
      [8: chemical products] 

1.517 

(0.063) 

1.468 

(0.060) 

1.168 

(0.062) 

            [9: machinery and other] - - - 

 

If the first shipment of a tour requires a longer tour duration (TD) in hours from loading to unloading, the 

probability of ending the tour is lower (Table 5). The square root (√𝑻𝑫) indicates a stronger effect for 

lower tour durations; the attractiveness of a direct tour does not decrease as strongly for longer tour 

durations. A direct tour is more likely to be chosen for a shipment within short reach. Nuzzolo et al. 

(2012) found similar effects and reasoned that carriers prefer constructing direct tours to reduce the 

complexity of planning. Additionally, the travel time savings of grouping shipments might be smaller for 

these nearby shipments.  

The capacity utilization (W/C) is calculated as the ratio between the total transported weight of the tour 

and the carrying capacity of the truck. The probability of ending the tour increases with a larger share of 

the vehicle capacity used. This reflects the strategy of transportation planners to fill vehicles optimally to 

save transportation costs. The quadratic component ((W/C)2)  implies a stronger effect for higher 

utilization rates; the transportation planner prefers not to end the tour until the capacity is nearly reached. 

As capacity utilization could only be obtained with respect to weight, many other parameters are expected 

to reflect differences in volume. 

AnyTS is a binary variable stating whether a transshipment zone is visited in the tour. Tours that visit a 

transshipment zone (anyTS = 1), e.g. a port, are more likely to be ended after the first shipment. The 

transported shipment is likely to be a producer flow as part of an international logistics chain. These 

shipments tend to have larger volumes (Friedrich et al., 2014). Consequently, it is usually not feasible to 

transport multiple shipments in a single tour.  
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AnyDCload and anyDCunload are binary variables stating whether any of the locations visited for 

loading/unloading goods is a distribution center. When a distribution center is visited (anyDCload or 

anyDCunload = 1), the probability of ending the tour decreases. The transported shipments are more likely 

to be transported to a place of consumption and to have a smaller volume (Friedrich et al., 2014). In 

addition, distribution centers organize their (un)loading activities in such a way that more customer visits 

can be made (Khan & Machemehl, 2017) and tend to use larger vehicles (van Duin et al., 2012). The 

effect is stronger when shipments are loaded at a distribution center (anyDCload  = 1) than when they are 

unloaded (anyDCunload = 1). Shipments unloaded at a distribution center correspond more often to flows 

originating from a producer.  

The probability of ending the tour after the first shipment is lower when an urbanized zone is visited 

(anyURB = 1). The demand is more concentrated in cities, efficient tours serving multiple customers 

might be possible more often. Especially if the driver has to enter a large city from a rural location it saves 

a lot of time to reduce the number of trips in and out of the city.  

The variables vehicle type [0-1] and goods type [0-8] are binary variables stating the vehicle type used for 

the tour and the NSTR category of the transported goods. Differences between vehicle types can be 

explained through differences in volumes and ease of (un)loading. Truck + trailers are less practical for 

transportation of shipments to multiple customers, as the trailer needs to be uncoupled to unload goods 

from the truck. Differences in goods types can be related to differences in volume, ease of (un)loading, 

stricter restrictions in combination with other goods, and dispersion of supply/demand. Restaurants with a 

demand for food products (goods type [1]) might be concentrated in a food district, while gas stations 

(goods type [2-5]) might be more dispersed. The estimated parameters for vehicle, goods, and location 

types in the ET first shipment model show effects similar to the descriptive statistics in Table 3; the 

categories with a positive parameter have a higher percentage of direct tours in Table 3. 
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Most effects are similar between the ET first shipment model and the ET later shipments model, but three 

key differences are found: (1) the sign of tour duration (TD) switches from negative to positive, and (2) 

prox and (3) lnstops are not included in the ET first shipment model.   

The probability of ending the tour increases with a higher tour duration (TD) in the ET later shipments 

model. Tours with multiple shipments are more likely to cover a full working shift than tours with one 

shipment. The transportation planner prefers not to construct tours that last close to a maximum work shift 

duration. If the tour lasts longer than expected due to congestion, then customers might experience a delay 

of a day or the driver must work overtime.  

Prox is the distance [km] of the nearest non-allocated shipment to the tour. If the nearest non-allocated 

shipment is closer to the tour as constructed so far (lower value of prox), then the probability of ending the 

tour is lower. If there are shipments that can be added with little additional time, then the transportation 

planner prefers to add more shipments to the tour. The variable lnstops is the natural logarithm of the 

number of stops in the tour as constructed so far. The parameter shows a negative sign: when the tour has 

more stops, the probability of ending the tour is lower. An additional shipment is not as unattractive when 

the tour visits many stops, the tour is already long and complex. The natural logarithm indicates a stronger 

effect for lower values; tours with fourteen or fifteen stops are considered more similar than tours with 

three or four stops.  

Models A and B are identical in the End Tour process, the choice set size (γ) only impacts the shipment 

selection, it does not influence the choice to end the tour. A more lenient proximity constraint (α=150km) 

has a minor impact on the estimated parameters. Model D, estimated on a subset of the carriers, leads to 

larger differences with Model A to C. The only sign that changes direction with different model 

specifications is that of the anyDCload parameter in the ET later shipments model; however, in accordance 

to the parameters for Model A to C, the anyDCunload parameter is still lower than that of anyDCload in 

Model D.   
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The high Nagelkerke pseudo-R2 values of the ET first shipment model (0.570 for Model D) indicate a 

good model fit. For the ET later shipments model the Nagelkerke pseudo-R2 values are relatively low 

(0.186 for Model D). The data used for estimation of the ET later shipments model covers a broader range 

of choices, which makes it more difficult to fit the data. The ET later shipments model predicts whether a 

tour ended after the second shipment but also after each consecutive shipment, while the ET first shipment 

model only predicts whether a tour ended after the first shipment.  

5.2 Select Shipment choice model  

The choice sets for estimating the SS choice model are generated by sampling a shipment that is part of 

the same tour as the observed chosen shipment and sampling γ-1 shipments of other tours by the same 

carrier on the same date as the unchosen shipments. Table 7 presents the estimation results of the SS 

model. A positive parameter increases the probability that an alternative (i.e. 𝑠𝑐𝑡𝑖𝑗 , a non-allocated 

shipment) is selected as the additional shipment to a tour. All three variables can be considered 

instrumental, they reflect the decision-making process of the transportation planner.  

Table 7. Estimation results Select Shipment choice model. Cells present the Beta and standard 

error. 

Specification A B C D 

R2
McFadden 0.187 0.169 0.249 0.156 

LL -63256 -73929 -73834 -101620 

N 43409 37112 41001 67181 

𝛽𝑟=1
𝑆𝑆     addcost -0.005 (0.000) -0.005 (0.010) -0.010 (0.000) -0.006 (0.000) 

𝛽𝑟=2
𝑆𝑆     addstops -1.039 (0.010) -1.088 (0.010) -1.176 (0.010) -0.918 (0.008) 

𝛽𝑟=3
𝑆𝑆     sameNSTR 2.313 (0.038) 2.712 (0.042) 2.627 (0.041) 2.176 (0.031) 

 

The additional generalized cost (addcost) is a weighted sum of the travel time (€45.12/h) and the distance 

(€0.45/km) a shipment adds to a tour. These weights have been used in the Dutch national freight model 

BasGoed and reflect the costs (e.g. labor and fuel) that carriers spend for each driven hour or kilometer 
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(Significance, 2018). A shipment with a higher additional cost has a lower probability of being selected, as 

carriers wish to minimize transportation costs by constructing efficient tours.  

As each shipment requires only two stops, one for loading and one for unloading, the additional number of 

stops (addstops) of a shipment can be zero, one, or two. A shipment that adds more stops to the tour (i.e. a 

shipment with fewer stops in common with the tour) has a lower probability of being selected. Shipments 

that have more stops in common with the tour add less complexity to the tour and might require less 

additional dwelling time (e.g. parking, (un)loading).   

SameNSTR is a binary variable stating whether a shipment alternative has the same NSTR goods type as 

the NSTR goods type of which the highest weight is transported in the constructed tour. In 93% of the 

cases in which multiple shipments are transported in a tour, we observe that all shipments have the same 

NSTR goods classification. Consequently, in the SS choice model the probability of selecting a shipment 

is higher if it has the same goods type as the other shipments in the tour (sameNSTR = 1). This can be 

explained with restricted goods combinations.  

Estimation results are relatively stable for Model A to D. The McFadden pseudo-R2 of Model C is higher 

and the addcost parameter of Model C is twice as low compared to Models A and B. In Model C, α is 

increased from 100km to 150km. Consequently, the choice set includes more distant, less attractive, 

shipments. Correctly predicting the observed choice is easier in such a choice set, which improves the 

McFadden pseudo-R2. Distant shipments have a higher additional cost, these higher values influence the 

addcost parameter.  

6. Validation and sensitivity analysis 

The estimation of the ET and SS choice models in itself does not provide sufficient information to judge 

the performance of the tour formation algorithm. Other aspects, such as assumed constraints and choice 

set formation approach, influence how tours are constructed. For this reason, we test the model’s 
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performance in two ways: by constructing tours with the shipments in an out-of-sample validation data set 

(i.e. 50% of the data, which we do not use for estimation), and by testing the sensitivity of the model 

outcomes to variations in travel times.  

6.1 Validation 

The model performance is assessed by comparing the observed tours in the validation set with a prediction 

of tours by our model. For this purpose, we calculate the coincidence ratio between the observed and 

predicted frequency distribution of tours by number of stops and by tour distance. A coincidence ratio 

higher than 80% is generally considered good in validating zonal freight trip distance distributions 

(National Cooperative Highway Research Program, 2008). As the coincidence ratio is above 80% for both 

the number of stops and tour distance (Table 8), we conclude that our model reproduces aggregate tour 

statistics well for a given set of shipments. In addition, the distribution of the number of stops is 

reproduced sufficiently for different location and goods types (Table 9). As expected, the model shows 

that tours that visit a distribution center tend to have more stops. Concrete/cement shipments, for which 

we only construct direct tours, are listed as NSTR8 in the data, which is why the coincidence ratio is very 

high in this category. However, also for other goods categories we find high coincidence ratios, indicating 

a high explanatory power of the End Tour choice model. For unknown reasons, though, too many direct 

tours are predicted for foodstuffs (NSTR1).  

Table 8. Coincidence ratio between observed and predicted distributions of number of stops and 

distance  

Model 

Coincidence ratio: number of stops 

(averaged over three models runs for A-C and two model runs for D) 

Number of stops Tour distance 

A 98.8% 89.3% 

B 99.0% 89.4% 
C 98.6% 89.5% 
D 96.9% 84.2% 
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Table 9. Coincidence ratio between observed and predicted distributions of number of stops by 

location and goods type. 

Model 

Coincidence ratio: number of stops 

(averaged over three models runs for A-C and two model runs for D) 

DC visited 
no DC 

visited 
NSTR0 NSTR1 NSTR2-5 NSTR6 NSTR7 NSTR8 NSTR9 

A 99.1% 96.6% 92.7% 69.6% 95.6% 96.4% 77.9% 99.5% 92.5% 

B 99.0% 97.0% 93.7% 68.8% 95.2% 96.6% 78.4% 99.6% 93.1% 

C 98.8% 97.3% 91.5% 70.6% 95.5% 98.0% 80.6% 99.5% 95.3% 
D 98.6% 90.4% 95.8% 85.1% 94.4% 94.9% 89.0% 96.2% 90.8% 

 

The differences between the coincidence ratios of Models A to C are negligibly small. Consequently, we 

can conclude that the model performance is robust to differences in the choice set size γ (A to B) and the 

rigidity of the proximity constraint α (B to C). Model D shows lower coincidence ratios overall when 

compared to Models A to C, indicating a worse performance. Model D was estimated with less diverse 

information (only a subset of carriers instead of a subset of days), and applied to a more dissimilar 

validation data set (data of other carriers instead of other days). However, the coincidence ratios of Model 

D are still highly satisfactory. This indicates that model parameters estimated for one set of carriers are 

applicable to another set of carriers. Because the data shows a strong self-selection of large third-party 

carriers, the estimated model is considered not representative for own-account carriers.  

While observed distributions are reproduced well, models A to C slightly overestimate the percentage of 

tours with three or four stops and underestimate the percentage of tours with six or seven stops (Table 10). 

This is caused by the fact that the ET later shipments model is estimated on all observations with multiple 

shipments. A separate model for each iteration (i.e. ET third shipment, ET fourth shipment) is expected to 

lead to better results. Additionally, too many tours with more than fifteen stops are predicted; the process 

of adding shipments can linger on too long in our probabilistic iterative approach.  

Models A to D overestimate the percentage of tours with a short distance (Table 11). We expect this to be 

caused by measurement differences between observed and predicted tour distances. The companies fill out 

observed tour distances in the survey while the predicted distances are calculated with our tour sequence 

algorithm and off-peak skim matrices. Consequently, the observed tour distances may include kilometers 
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driven to refuel, to have lunch, or to evade a congested AM or PM peak highway; kilometers that our 

predicted tour distance does not include.  

Table 10. Observed and predicted distribution of number of stops. 

Number of 

stops 

Percentage of tours 

(averaged over three models runs for A-C and two model runs for D) 
 

50% of days for estimation 50% of carriers for estimation 

Observed Predicted (A) Predicted (B) Predicted (C) Observed Predicted (D) 

1-2 (direct) 92.5% 92.5% 92.6% 93.0% 90.8% 89.2% 

3 2.0% 2.2% 2.1% 1.9% 3.3% 3.5% 

4 1.5% 1.8% 1.7% 1.6% 2.2% 2.8% 
5 1.2% 1.2% 1.2% 1.1% 1.4% 1.5% 

6 1.1% 0.8% 0.8% 0.8% 0.8% 0.9% 

7 0.7% 0.5% 0.6% 0.5% 0.5% 0.5% 
8 0.3% 0.3% 0.3% 0.3% 0.3% 0.4% 

9 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 

10 0.1% 0.1% 0.1% 0.1% 0.2% 0.2% 
11 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 

12 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 

13 0.1% 0.0% 0.0% 0.0% 0.0% 0.1% 
14 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 

≥15 0.1% 0.1% 0.1% 0.1% 0.0% 0.4% 

 

Table 11. The observed and predicted distribution of tour distance. 

Tour distance 
[km] 

Percentage of tours 
(averaged over three models runs for A-C and two model runs for D) 

50% of days for estimation 50% of carriers for estimation 

Observed Predicted (A) Predicted (B) Predicted (C) Observed Predicted (D) 

<50 67.8% 72.5% 72.4% 71.9% 49.5% 58.1% 
50-100 9.1% 10.1% 10.1% 10.5% 19.8% 16.5% 

100-150 8.0% 7.6% 7.7% 7.9% 12.6% 11.4% 

150-200 5.1% 4.3% 4.4% 4.5% 7.7% 7.2% 
200-250 3.1% 2.6% 2.5% 2.5% 3.8% 2.9% 

250-300 2.2% 1.1% 1.1% 1.0% 2.1% 1.4% 

300-350 1.6% 0.6% 0.6% 0.6% 1.5% 0.8% 
350-400 1.1% 0.4% 0.4% 0.4% 1.2% 0.5% 

400-450 0.7% 0.3% 0.3% 0.2% 0.7% 0.3% 

450-500 0.4% 0.2% 0.2% 0.1% 0.4% 0.2% 
500-550 0.3% 0.1% 0.1% 0.1% 0.2% 0.2% 

550-600 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 

600-650 0.1% 0.1% 0.1% 0.0% 0.1% 0.1% 
650-700 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 

700-750 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

750-800 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
800-850 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

850-900 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

900-950 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
950-1000 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

≥1000 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 

 

We should note that the observed and predicted tours are constructed with the same set of observed 

shipments. This explains at least partially why observed tour statistics are reproduced well. Solid 

statements about the extent to which this tour formation model can improve traffic forecasts can be made 
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only when the model is applied to a synthesized set of shipments and when assigned vehicle trips are 

compared with traffic counts.   

6.2 Sensitivity analysis 

To further validate our model and understand its behavior, we analyze its sensitivity to travel time 

changes. Four simple scenarios are defined in which all OD pairs experience the same increase or decrease 

in travel time. When travel times in the network increase, fewer direct tours (Figure 2) and fewer tours 

with 15+ stops are predicted (Figure 3). Longer travel times lead to higher transportation costs; therefore, 

carriers have a stronger focus on travel time savings, which may be achieved by combining multiple 

shipments efficiently more often. In addition, a tour with the same set of shipments requires a longer travel 

time in this scenario; regulated maximum driver shifts are reached with fewer shipments, which limits the 

construction of tours with many shipments. Both impacts are interpretable and plausible, and are found 

repeatedly over model runs.  

 

Figure 2. The percentage of direct tours under varying travel time scenarios. The results are 

averaged over two runs with Model A.  
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Figure 3. The percentage of tours with multiple stops under varying travel time scenarios. The 

results are averaged over two runs with Model A.  

7. Conclusions 

In this research, we developed a descriptive tour formation model in which tours are grown iteratively by 

allocating one additional shipment until the choice is made to end the tour. Typical for the approach is that 

it is shipment-based and the parameters of the choice models are estimated using a large and 

comprehensive database that initially covers over two million shipments for all goods types transported by 

third-party road freight carriers in the Netherlands. The tour patterns constructed with the model take 

realistic considerations into account, for instance transportation cost minimization and constraints related 

to vehicle capacity or working shift regulations. The estimations also indicate a preference for the 

formation of multiple stop tours when distribution centers and urbanized areas are visited.  

An out-of-sample validation study showed a close reproduction of observed statistics regarding tour 

distance and number of stops, with coincidence ratios exceeding 90%. Both the model estimates and 

performance are robust for varying choice set sizes and shipment selection rules. Consequently, we 

conclude that this model can also be applied in a shipment-based freight simulation framework.  
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Several features that might be added or improved about the model include the following. Firstly, a model 

that predicts empty trips is of large importance. While empty trips constitute a large portion of all freight 

trips (Sánchez-Díaz et al., 2015), these empty trips are not reported in the data and, therefore, we do not 

model them. A possible strategy forward could be to infer the empty trips from the current data, using an 

empty trip production model. Additional data is required for validation. Secondly, a departure time choice 

model would allow us to consider that traffic flows and travel times vary throughout the day. As routing 

and scheduling decisions are often made together because of variations in required delivery times, we 

expect that the combined treatment will improve the predictive capabilities of the tour formation model.  
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