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1.   Introduction  

The main feature of recent national freight transport models in Europe is the incorporation of a 

logistic component (module) in the traditional freight demand-modelling framework (de Jong et 

al. 2013). Logistics decisions of firms are incorporated in the modelling process often based on 

shipment size optimization theory.1 According to this theory, firms are assumed to minimize total 

annual logistics costs by trading-off inventory holding costs, order costs and transport costs. The 

logistics module estimates frequency/shipment size choice and transport chain choice (i.e. 

transport mode choices and use of trans-shipment)2 based on a cost minimization model where 

firms are assumed to minimize annual total logistics costs.    

Such logistics modules have been developed for Norway, Sweden (SAMGODS model), Denmark 

and Flanders (see Ben-Akiva and de Jong, 2013), within the overall framework of the aggregate-

disaggregate-aggregate (ADA) freight transport model.3  The current logistic modules in these 

countries, however, lack two main elements. First, they do not account for the main determinants 

of shipment size and transport chain choices other than cost, i.e. decisions are mainly based on 

cost considerations (and to some extent on factors such as access to road and rail and value 

densities). Second, these models are deterministic and lack a stochastic component. A 

deterministic model has a weak empirical foundation: the way transport agents (i.e. shippers, 

forwarders and carriers) behave in the model is not based on observed data but on the assumption 

that they will choose the shipment size and transport chain that has minimum costs (and on data 

relating to transport networks, possible transhipment locations and expert knowledge of cost 

functions). Instead of observed behaviour, such a model represents normative behaviour. In order 

to improve the predictions of the model and allow richer and more realistic policy analyses, 

logistics decisions should be modeled taking into account these two elements.  

The main objective of this paper is estimating a full random utility logistic model, i.e. stochastic 

model, for Sweden, which overcomes the aforementioned shortcomings of deterministic models. 

                                                           
1
 See Chow et al (2010) for a comprehensive review of freight forecast models elsewhere.  

 
2 A transport chain is defined here as a series of modes that are all used to transport a shipment from the sender to the receiver 

(e.g. road-sea-road). 

3 Moreover, models for shipment size and mode choice have been developed based on the French ECHO dataset at the shipment 
level (Combes, 2010).  
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A deterministic model effectively assumes that the stochastic component can be ignored – in 

other words, that the researcher has full knowledge of all the drivers of behaviour and that there is 

no randomness in actual behaviour. As a result of adding a stochastic component in the utility 

model, the response functions (now expressed in the form of probabilities) become smooth 

instead of lumped at 0 and 1 as in a deterministic model.  This in turn addresses the problem of   

“overshooting”4 that is prevalent in a deterministic model when testing different policies. 

Stochastic models of mode and shipment size choice have been estimated before (see footnote 3), 

but usually the estimation is not by commodity type and a systematic comparison between 

stochastic and deterministic models in an implementation context (e.g. in terms of elasticities 

calculated from runs with the actually used models) is missing.  

The empirical analysis in this paper involved two steps. As a first step, we estimated econometric 

models that describe the determinants of transport chains and shipment size choices. We used the 

2004/2005 Swedish Commodity Flow Survey (CFS)5 and inputs from the SAMGODS model for 

estimation of multinomial logit models (MNL) for 16 different commodity groups. Parameter 

estimates from this model were later used to setup a fully stochastic model. Note that by their 

very nature the MNL models are probabilistic models because they include a stochastic 

component to account for the influence of omitted factors. The main results from the MNL 

models show that variables such as transport cost and time, having access to rail or quay at origin 

and distance are important determinants of shippers’ mode and shipment size choices.  

As a second step, based on the MNL estimation results, we setup a stochastic logistics model for 

two commodity groups, metal products and chemical products. Using this model, we compared 

transport cost and time elasticities for tonne-km between the stochastic and deterministic models 

for the two commodities. These elasticities differ between the two models. Most importantly, 

they are usually smaller (in absolute values) in the stochastic model which implies 

“overshooting” is less of a problem than it is for deterministic models, as expected. In future 

endeavors, the difference between the two models could be further studied by looking at 

                                                           
4
 “Overshooting” happens when the relevant part of the logistics costs function is rather flat and a small change in logistics costs 

can lead to a shift to a completely different optimum shipment size and transport chain (Abate et al. 2014). On the other hand 
there could also be “sticky” choices in a deterministic (all-or-nothing) model when one alternative is clearly cheaper than the other 
alternatives. Improving the other alternatives will then not lead to any change in market shares until one of these other alternatives 
becomes the cheapest and then the deterministic choice is suddenly completely altered. 

5
 http://www.trafikverket.se/contentassets/23a269d514d24920ad445881d724811f/filer/vfu_2004_2005.pdf 
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elasticities on other output measures such as vehicle kilometers, number of vehicles crossing a 

screenline, etc. 

The remaining part of this paper is organized as follows. Section 2 presents the econometric 

model set up and results from estimation; Section 3 describes the stochastic model setup based on 

the inputs from Section 2; Section 4 compares model outputs from the stochastic and 

deterministic models; finally, Section 5 presents our main conclusions and suggestions for future 

work.   

2. Econometric framework  

Econometric studies of freight mode/vehicle choice are based on the key insight that 

mode/vehicle/cargo unit choice entails simultaneous decisions on how much to ship (see, for 

example, Abate and de Jong, 2014; Johnson and de Jong, 2011; Holguin-Veras, 2002; 

Abdelwahab and Sargious, 1992; Inaba and Wallace, 1989; McFadden et al., 1985). This 

simultaneity in decisions requires the use of joint econometric techniques such as discrete-

continuous models. An alternative is sometimes discrete-discrete (by classifying shipment sizes 

to a number of size classes), as in Johnson and de Jong and (2011) and Windisch et al. (2010). In 

addition to recognizing this simultaneous decision process, these studies show that various haul, 

carrier, and commodity characteristics affect the decisions regarding the optimal shipment size 

choice and choice of transport mode.6 The discrete choice is usually mode choice, but can also be 

the choice of transport chain (e.g. Windisch et al., 2010).  

McFadden et al. (1985) and Abdelwahab and Sargious (1992) provide the most complete 

formulation of the firm’s simultaneous choice of mode and shipment size. However, the 

applicability of their models is rather limited when decision makers have to choose from more 

than two mode alternatives. Holguin-Veras (2002) and Johnson and de Jong (2011) used an 

indirect approach to address the simultaneity problem. They model the discrete choice component 

(vehicle class choice in Holguin-Veras and mode choice in Johnson and de Jong) as the main 

equation, replacing actual shipment with prediction from a shipment size auxiliary regression. 

This approach is an interesting one when the main focus is the vehicle/mode choice because it is 

possible to apply advanced discrete choice models that overcome the independence of irrelevant 
                                                           
6 In this study, as in most previous studies, we consider the weight of shipment size as an endogenous variable. However, we note 
that shipment volume (in m3) is also an important factor, which shippers consider jointly with mode choice decisions. We cannot 
model shipment volume because our data set, the Swedish CFS, does not contain this information.  
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alternatives (IIA) problem. But, unlike McFadden et al. (1985), this approach does not allow for 

testing for simultaneity bias. 

Due to the above technical complexities, mode choice in freight transport is usually studied in 

isolation (or in combination with network assignment, as multi-modal assignment). However, as 

pointed out by Johnson and de Jong (2011), mode and shipment size are closely linked choices. 

Large shipment sizes usually coincide with higher market shares for non-road transport, whereas 

there is a high correlation between road transport and small shipment sizes. Such a correlation 

calls for a joint econometric model. Abate et al. (2014) tested two types of joint econometric 

models, namely: a discrete-discrete (DD) model where the dependent variable is a discrete 

combination of shipment size categories and mode choice alternatives, and a discrete-continuous 

(DC) model which treats transport mode chain choice as a discrete variable and shipment sizes as 

continuous variable. Although DC models were found to be theoretically sound, given the size of 

the CFS data and the number of commodity groups involved, a pragmatic alternative is a DD 

model. In this paper we estimate a DD which is specified as follows:  

     β ε= +U Xi i i
 (1) 

Where Ui is the utility derived from choosing a discrete combination of transport chain and a 

shipment size category i, Xi is a vector of independent variables explaining mode choice and 

shipment size choice, β  is a vector of parameters to be estimated and εi  is an error term. Since Ui 

is a joint variable, the model setup allows for simultaneous consideration of transport chain and 

shipment size decisions. The main variables included in Xi are transport cost, transport time, 

infrastructure access indicators, value density, and domestic/international shipment indicators. 

We estimate Eq. 1 using a multinomial Logit model (MNL). 

We note that there could be correlations between alternatives, especially given that there are 

alternatives that have a transport chain (or a shipment size) in common. The MNL model assumes 

choice alternatives are independent, and therefore could suffer from the ‘red bus – blue bus’ 

problem (that is that similar alternatives should have higher cross-elasticities, but do not have 

these in MNL). A relatively straightforward solution in such cases is the nested logit model. 

Windisch et al. (2010) tested various nested logit models on the CFS 2004-2005 (but not by 

commodity) and found that a nesting structure with transport chain choice above shipment size 
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choice worked best (this means that there is more substitution between shipment sizes than 

between modes). More complicated nesting structures can be tried in mixed logit and multivariate 

probit models, but these model types have very long run times, especially on large data sets as we 

have here.    

2.1. Data  

The main data source for this paper is the 2004/2005 Swedish Commodity Flow Survey (CFS). 

The data has 2,986,259 records. Each record is a shipment to/from a company in Sweden, with 

information on origin, destination, modes, weight and value of the shipment, sector of the sending 

firm, commodity type, access to rail tracks and quays, etc.7 From this we selected a file of around 

2,897,010 outgoing shipments (domestic transport and export, no import) for which we have 

complete information on all the endogenous and exogenous variables.  

Although the CFS data is extensive, it does not contain information on transport costs and 

transport time variables. Given the importance of these variables in mode/shipment size choice 

analysis, the existing logistic module of the deterministic model was used to generate them for 

each shipment in the CFS. They were generated both for the chosen mode-shipment alternatives 

in the CFS and for potential non-chosen alternatives tailored to each shipper based on the 

transport network of the origin and destination of their shipment.  

The CFS classifies transport mode chains to chains inside Sweden and chains outside Sweden. In 

domestic shipments, trucking accounts for the overwhelming majority of the shipment frequency 

(95.79%), followed by chains which involve waterborne transport modes (a ship vessel and 

ferry).8 The high share of trucking is also evident in its percentage share in weight and value in 

domestic freight transport. For international shipments, vessel (maritime) transport accounts for 

the highest share both in shipment weight and value.  

To see the distribution of shipment sizes we classified the weight variable in the CFS into 16 

categories9, as shown in Table 1. A quarter of the total shipments fall in the first category (0-50 

                                                           
7 In the CFS a shipment is defined as a unique delivery of goods with the same commodity code to/from the local unit or to/from a 
particular recipient/supplier (SIKA, 2004).  

8 We defined transport chain alternatives based on their frequency in the CFS. Transport chains that occurred with a frequency of 
96 or higher were considered as possible choice options.   
9 The dependent (choice) variable (Ui ) in Equation 1 is defined based on the classification on Table 1.   
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kg). The prevalence of small shipments reflects the dominance of trucking which is usually 

preferred for its flexibility and reliability. Categories 10 and 11, ranging from 35 to 45 tonnes 

(well within a full truckload range), account for 23.71 %, again showing the dominant role of 

trucking.10  

Figure 1 presents the cumulative density distribution of shipment weight for metal products and 

chemical products and for all commodities in the CFS. Shipments weighing 10 tonnes or less 

account for about 90% of the shipments for the two product groups. This distribution is somewhat 

different from what is observed for all commodities which also have concentration of larger 

shipment sizes.   

There are 24 commodity groups in the CFS. In this paper, however, we found it to be more 

instructive to analyze selected commodities than all commodities identified in the CFS. This is 

due to the dominance of trucking for most shipments. In fact, for ten commodity groups the share 

of trucking is more than 98 %. Clearly, there is little to learn about the determinants of mode 

choice decisions of shippers when there is such overwhelming dominance of one mode of 

transport. For the remaining 16 commodity groups, including metal products and chemical 

products for which we implemented a stochastic module, there is relatively less dominance of 

trucking.   

Descriptive statistics are presented in Table 2. On average, 2 % of all shippers had access to rail 

at origin and 0.4 % had access to quay at origin. The equivalent figures for metal products and 

chemical products are 57 and 0.03 % for rail access, and 0.5 and 0.03 % for quay access, 

respectively. Much to the benefit of the econometric analysis, the CFS has an extensive variation 

in terms of average shipment values, shipment weights, and transport cost and time.    

 

2.2. Econometric results  

Table 3 presents estimation results from the MNL model presented in Equation 1 for 16 

commodity groups. The choice alternatives in each model are a discrete combination of a 

transport chain and shipment size. By and large, the results reported in Table 3 are plausible and 

                                                           
10 The maximum gross weight of the trucks is 60 tonnes in Sweden and Finland compared to  40 tonnes in most other European 
countries  
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are in line with expectations. Transport cost has a negative effect on the utility of a choice 

alternative. This is in line with theory which predicts that higher delivery costs make a choice 

alternative less attractive. While these effects are statistically significant, the parameter values are 

often small, which can imply that cost has a rather limited influence on a choice alternative. It is 

important to note, however, that both the unit of measurement and dimensions of change 

contribute to this low level estimates.    

We used a single cost coefficient for all alternatives, building on the idea that 1 SEK is 1 SEK, 

whatever the alternative it is spent on. Other forms than linear could be tried for the cost 

specification (such as logarithmic, spline or a combination of linear and logarithmic), but to 

compare the deterministic model version of the SAMGODS with the stochastic model presented  

in this paper, it is best to use a linear cost specification, since the former uses linear costs.  

The variable for inventory costs during road transport (transport time multiplied by value of the 

shipment) has the expected (negative) sign and is highly significant for most commodity groups. 

This variable captures time costs related to the capital cost of the inventory in transit and maybe 

also those related to deterioration and safety stock considerations. The time-dependent link-based 

transport costs (labour and vehicle costs) have already been taken into account in the transport 

costs. Estimation of the inventory cost variable for chains involving rail and sea did not lead to 

significant coefficients. This is probably due to the possibility that capital costs of an inventory in 

transit are most relevant for truck transport.   

The access to rail/quay dummy variables was included in the utility functions of choice 

alternatives where rail/quay was used as the first or second mode in the chosen transport chain. 

The interpretation of the parameter values is that shippers located in the proximity of or access to 

rail track or quay yard are more likely to choose chains that start with a rail/quay leg (or use these 

modes on the second leg of the chain). The two dummies are, however, not significant for most 

commodity groups.  

For most commodity groups, we find significant positive effects for the value density (the value 

of the shipment divided by its weight) variable. The relevant alternatives for this variable are 

transport chain alternatives involving the two smallest shipment size categories (0-50 kg and 51-

200 kg). The positive sign, therefore, implies that high value products correlate with smaller 

shipment sizes, which might also imply frequent shipments. We also find that international 
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shipments tend to be shipped more using chains that use rail, ferry or vessel. The transport chain-

specific constants mostly have negative signs and are significant. This is expected given that 

trucking, the reference chain type, is preferred to the other modes for its flexibility and ease of 

access (which are not included as explanatory factors in the models since they are not measured 

in the CFS).   

3 From Deterministic to Stochastic Logistics model  
 

3.1.SAMGODS review  

The Swedish national freight transport model-  SAMGODS- is one of the models that applies the 

aggregate-disaggregate-aggregate (ADA) framework (see: de Jong and Ben-Akiva, 2007; Ben-

Akiva and de Jong, 2013).11 The ADA model framework starts with an aggregate model for the 

determination of flows of goods between production (P) zones and consumption (C) zones (being 

retail for final consumption; and further processing of goods for intermediate consumption). The  

PC flows are derived from a gravity-type model. After the determination of these PC flows, 

comes a disaggregate “logistics” model, that on the basis of PC flows produces OD (origin-

destination) flows for network assignment. A PC flow that uses the transport chain road-sea-road 

between the production and consumption locations contributes to three OD flows (one for each of 

the modes in the chain). 

The logistics model in turn consists of three steps: 

A. Disaggregation of zone-to-zone flows to individual firms at the P and C end; 

B. Models for the logistics decisions by the firms (shipment size, trans-shipment locations 

and modes in a transport chain); This gives OD flows at the level of the annual firm-to-

firm flows; 

C. Aggregation of the information per shipment to zone-to-zone OD flows for network 

assignment. 

 

                                                           
11

 Akin to de Jong and Ben-Akiva (2007) a recent study by Zhao et al (2015) a freight temporal assignment model 

where disaggregate methods are used to assign aggregate annual flows to aggregate daily flows. We note 

there are other approaches to simulating freight flows at the national or broad regional levels using log-linear, 

micro-simulation, agent-based and direct-demand modeling efforts in various countries which are compehansively 

review by Chow et al (2010).  



9 

 

This model structure allows for logistics choices to be modelled at the level of the decision-

maker. The network assignment is an aggregate model and is represented by the last A in ADA.  

When the logistics model within the ADA-framework for Sweden (and Norway) was first 

conceived, the idea was that the logistics model would be estimated on data at individual 

shipment level from the Swedish CFS (see de Jong and Ben-Akiva, 2007, section 7). Since the 

deterministic logistics module as such is complex and the estimation of disaggregate models 

would take a significant amount of time, a ‘preliminary’ or ‘prototype’ version of the logistics 

model was developed in both Sweden and Norway (see de Jong and Ben-Akiva, 2007, section 8) 

in 2005/2006. This version did not require disaggregate estimation. Instead it relied on a cost 

minimisation per firm-to-firm (f2f) flow, where for each f2f flow only one alternative (namely the 

one with the lowest total logistics cost) is chosen. Because it uses different transport solutions for 

different firm sizes and shipment sizes, the all-or-nothing character of the deterministic model is 

reduced.  

After the prototype had been developed, it has been improved in a number of rounds and also 

calibrated to aggregate data for a base year, but the current official version of the SAMGODS 

logistics model still uses a deterministic logistics model. The same holds for the other ADA 

models developed so far. A partial exception is that the Danish national freight model contains a 

module for the choice of mode to cross the Fehmarn Belt screenline that uses a random utility 

model estimated on disaggregate data (including stated preference SP surveys in the Fehmarn 

Belt corridor). Other transport chains, however, for example in Denmark, are handled by a 

deterministic logistics model (Ben-Akiva and de Jong, 2013, section 4.6). And also in Norway 

estimations have taken place recently on disaggregate data for the flows between Norway and 

Sweden from the Swedish CFS. 

 

 

3.2.Stochastic Model procedure  

We programmed a prototype stochastic logistics model for Sweden based on the estimated 

transport chain and shipment size models for two commodities: metal products and chemical 

products.  
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The stochastic logistics model was estimated on shipments from the CFS 2004-2005. In the 

implementation we do not use the CFS records directly, but we apply the estimated transport 

chain and shipment size models from Section 2 to the annual firm-to-firm (f2f) flows that are also 

used in the current deterministic logistics model. These f2f flows are taken from the first step of 

the logistics model (step A: disaggregation; see Section 3.1), which remained the same in this 

prototype For every f2f flow within a commodity group, the new prototype stochastic logistics 

model now predicts the choice of transport chain and shipment size and it does so by producing 

choice probabilities for every available alternative.  

During the application of the stochastic logistics model the following steps are performed: 

a) Determine the longlist of transport chains. This step fully corresponds to the 

corresponding step in the deterministic model. Transport chains with optimal 

transshipment locations are determined for each of the chain types distinguished within 

the deterministic model. For these chains, transport distance and time are calculated. 

Unimodal Level of Service matrices are read in for all possible chain leg modes. Then 

optimal chains are constructed using a one-to-many algorithm that follows a stepwise 

approach in adding extra legs to chains and determining the optimal transfer locations 

(Significance, 2015). Since we do not observe the transhipment locations in the CFS, we 

could not include this choice in estimation. Therefore, in the stochastic prototype, the 

determination of the optimal transhipment locations for each available chain type from the 

set of available locations is still done deterministically.  

 

b) Reduce the number of chain types to the more limited set (shortlist) distinguished in the 

stochastic model by a deterministic choice amongst similar chain types. Within the 

deterministic model several rail modes (container train, feeder train, wagonload train, 

system train) and sea modes (direct sea, feeder vessel, long-haul vessel) are available. On 

the other hand, within the stochastic model only one rail and one sea mode are 

distinguished (due to the classification used in the CFS). To select the rail and sea modes 

to be used in the stochastic model, as well as to determine the vehicle types to be used on 

each leg, we still apply the deterministic model. This has to be done for all of the available 

weight class (as shown in Table 1) choice options separately. After step (b) the best chains 
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and vehicle types are available for the choice set of chain types and weight classes used 

within in the stochastic model: 

 

Chain types: 

Truck 

Vessel 

Rail  

Truck-Vessel 

Rail-Vessel 

Truck-Truck-Truck 

Truck-Rail-Truck 

Truck-Ferry-Truck 

Truck-Vessel-Truck 

Truck-Air-Truck 

Truck-Ferry-Rail-Truck 

Truck-Rail-Ferry-truck 

Truck-Vessel-Rail-Truck 

Truck-Rail-Vessel-Truck 

 
However, not all the above choice options will be available for each commodity. As an 
example, Figure 2 shows the combinations of transport chain type and weight class that 
are available in the stochastic model for commodity metal products (based on the actual 
frequencies in the CFS 2004-2005). 
 

c) Calculate the utilities for each of the choice options in the stochastic model. In step (b) 

the number of available chain types has been reduced to at most 14 the maximum number 

of chain types distinguished within the stochastic model. Within the third step the utility 

functions are calculated for each of the available choice options (combinations of 

transport chain and shipment size) given above. The estimated coefficients are multiplied 

with the relevant chain input values obtained from the chains determined in step (b). In 

this step there is no information available on the value of goods (expressed in SEK) or the 

value density (expressed in SEK/kg) on specific firm-to-firm relations. Therefore the 
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average commodity value is used in application of the model. The dummy coefficient for 

direct rail access is always applied to PC chains consisting of a single rail leg and never 

for the other chains. Quay access is not used in the implemented models for metal and 

chemical products. 

d)  Calculation of the choice probabilities. When the utilities have been calculated for all 

available transport chain types and weight classes, the probability for each choice option 

can be calculated in the usual way for multinomial logit models. 

 

e) Aggregation of flows. Similar to the deterministic model, all firm to firm flows are 

aggregated to obtain OD-flows. However, instead of the single best chain generated by the 

deterministic model, we now aggregate over all choice options and weight each choice 

option with the probability calculated in step (d). 

 

3.3 Calibration procedure for the stochastic model 
 

The stochastic logistics model described above includes alternative-specific constants for all 

transport chain alternatives (minus one). This means that the model will reproduce the market 

shares (in terms of the number of shipments) for the chains as they are in the estimation data 

(which is based on the CFS, but also depends on the question whether we have level-of-service 

data for a particular transport chain and PC relation) in the current deterministic logistics  model. 

This is not necessarily a good reflection of the actual importance of the various modes for the 

commodity involved. We also have observed aggregate data on the tonne-kilometers by mode 

from transport statistics). For metal products and chemical products these numbers for the year 

2006 are in the columns labelled ‘statistics’ in Table 4.  

When we compare the tonne-km by mode (by OD-leg, so also access/egress tonne-km are 

counted) from the uncalibrated stochastic model to these observations, we see that it 

overestimates the road and the sea tonne-km for both products. For metal products there is some 

underestimation of rail, and for chemical products the stochastic model predicts a very limited 

(less than one million tonne-km) use of rail transport. This is in line with the CFS, but not with 

the calibration data (where rail has a market share of more than 10% for chemical products).  The 
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deterministic logistics model (without the rail capacity module) on the other hand overestimates 

the observed rail tonne-km. 

To calibrate the stochastic logistics model, we use the observed tonne-km shares as targets and 

add to each transport chain alternative constant in the utility functions of the stochastic model:  

Ln (Oj/Mj) 

In which: 

Oj: observed share of mode j 

Mj: Modelled share of mode j 

This makes under-predicted modes more attractive and over-predicted ones less attractive. To 

reach the observed targets, this procedure needs to be repeated several times; it is an iterative 

calibration procedure. For the comparison of elasticities in this report we performed a limited 

number of iterations with the stochastic model for both metal products and chemical products, 

which brought us much closer to the observed targets, but still not very near. 

4 Deterministic vs. Stochastic, a comparison using two 

commodity groups  
 

4.1 Method 

 

The stochastic approach applied in this paper for different commodities is intended to be a 

substitute or complement to the deterministic model, which currently constitutes the very heart of 

the logistics model in the SAMGODS model system. For metal products and chemical products, 

both the deterministic and the stochastic model have been implemented into an executable. By 

switching these executables when running the SAMGODS model system, we may conveniently 

switch between the deterministic and the stochastic models. Both models operate on the same set 

of input data when it comes to demand matrices and costs for 2006.  

All results in this section have been obtained using the base scenario, Base2006, of SAMGODS 

version 1.0 (April 2015). This scenario has been run without taking into account railway capacity 

restrictions. Since the scenario was originally calibrated using the Rail Capacity Management 
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module, model output may significantly deviate from statistics. For example, the total rail tonne-

km is much larger in model output than in transport statistics.  

The results in terms of tonne-km per mode presented in Table 4 are derived from the direct output 

from the deterministic and stochastic logistics model. These are less precise than those from the 

corresponding assigned quantities, and introduces extra uncertainty in the results, in particular 

when it comes to computed tonne-km within Swedish territory.   

 

 

4.2 Comparison of model prediction on selected output measures 

 

In the first step we checked the outcome of the model runs against the statistics. Table 3 below 

shows that both the deterministic and the stochastic model overestimate the tonne-km in Sweden 

a lot.  Another observation that can be made is that the deterministic model calculates relatively 

high shares for rail while the stochastic model calculates relatively high shares for road and sea. 

Both the overestimation of the total tonne-km and the deviation from the modal split in the 

statistics will have consequences for the calculation of the elasticities. 

 

4.3 Comparison of elasticities  

 

Of major interest is to compare the model’s responses to small (or larger) perturbations in input 

data, i.e. elasticities. The logistics model comprises large sets of both input and output data. Only 

a few elasticities are presented here (and one has to take into account that the total demand per 

commodity is constant). Our choice has been to vary, on the input side, the link costs that 

includes the distance and time based costs for all vehicle types within road, rail and sea and on 

the output side, tonne-km in Sweden.12 In Table 5 we summarize the scenarios investigated. 

                                                           
12 Tonne-km in Sweden is the sum of the domestic transports and the domestic parts of international transports that 
are carried out in Sweden.  
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Results for metal products 

In Table 6, results for change in tonne-km in Sweden are shown for the different scenarios, 

computed with the deterministic and the stochastic model. We make the following observations: 

- All own-price elasticities have the expected sign. 
- The own elasticities for changes in road and rail cost are in all cases smaller in the 

stochastic model than in the deterministic model. This is in line with our expectations: we 

expected that the inclusion of other factors than costs in the stochastic model and the 

move away from the all-or-nothing choice in the deterministic model would reduce the 

modal shifts (that are calculated for the deterministic model).  Especially for road cost 

changes, the stochastic model elasticities are more plausible (e.g. they do not become as 

strong as -2.87 as in the deterministic model). For changes in the sea transport cost, some 

elasticities are stronger in the deterministic model and some in the stochastic model. The 

elasticities can differ substantially between cost increases and decreases (in a logit model 

elasticities for increases and decreases do not have to be the same, this depends on where 

the starting point is located on the S-shaped logit curve). 

- Nearly all cross price elasticities have also the opposite sign of the direct elasticity, which 

is what one should expect from a model in which the modes would be mutually exclusive 

(‘competing’) alternatives. However, both the deterministic and the stochastic model have 

transport chains in which several modes are combined (e.g. with rail as main haul mode 

and road for access and egress). As a result, increasing the cost of rail transport could lead 

not only to an increased share of the truck only chain (competition), but also to a reduced 

truck use in the truck-rail-truck chain (complementarity)13. This usually refers to rather 

short road access and egress distances, but still it reduces the elasticities (in absolute 

values) and can even lead to cross elasticities with the same sign as the own-price 

elasticities. Most of the shifts (in both models, especially in the stochastic model) are 

from/to the land based modes to/from sea. 

- Transfers to/from rail are very small in the stochastic model. This could imply that current 

rail shippers are captive to the mode to some extent (note that metal products is 

characterized by the dominance of one big shipper). On the other hand, it could also imply 

                                                           
13 Furthermore, there can also be changes in shipment size in both models as a result of cost changes. 
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that other modes are competitively priced to rail, implying that larger price incentive or 

availability of infrastructure is needed to attract more shippers to rail. 

Results for chemical products 

In Table 7, results for change in tonne-km in Sweden are shown for the different scenarios, 

computed with the deterministic and stochastic model. The following conclusions can be drawn 

from this:     

- In all cases, the own-price elasticities have the expected sign.  

- As expected, the own elasticities for changes in road, rail and sea transport cost are 

smaller in the stochastic model than in the deterministic model. For all these three cost 

changes, the elasticities of the stochastic model seem more plausible (the deterministic 

model has elasticities here that go beyond -2). Again, there are substantial differences 

between cost increases and decreases. 

- In most cases the cross price elasticities have also the opposite sign as the own elasticity. 

For the stochastic model, this is always the case, but for the deterministic model, there are 

stronger complementarities between modes.  

- Large differences in modal split in the base (see Table 3) lead to very different elasticities. 

- Transfers from road to rail (in the stochastic model) are higher for chemical products than 

for metal products. Also the own elasticity of rail costs is stronger for chemical products 

than for metal products.  This is all probably due to the lower share of rail transport for 

chemical product shippers compared to metal product shippers. Given this low share of 

rail in chemical product shipments, any price incentive will attract shippers to shift to rail.  

- For chemical products, sea transport has a higher share than for metal products. This is 

reflected in the elasticities of the stochastic model which yields stronger sea cost 

elasticities in the model for metal products than for chemical products. 

Overall results  

Elasticities differ according to commodities, regions (modal split etc.), distance class, modelling 

approaches and measures (tonne, tonne-km, vehicle-km), see e.g. de Jong et al. (2010). This 

source does not contain recommendations per commodity type. For all commodities the 

recommended road tonne-km price elasticity on the number of tonne-km by road through mode 

choice in de Jong et al. (2010) is -0.4 and the lower bound provided is -1.3. Some of the road 
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costs elasticities of the deterministic model for metal and chemical products are clearly beyond 

this lower bound. The own elasticities, measured in tonnes, calculated using a weighted logit 

mode-choice model for the Öresund region (Rich, Holmblad & Hansen (2009) are in about the 

same range as the own elasticities measured in tonne-km from the stochastic logistics model 

calculated in this paper.  

 

 

5 Conclusions and ideas for further research 
 

This paper has presented a new stochastic model of transport chain and shipment size choice 

which overcomes a well-known disadvantage of deterministic models that lead to implausibly 

large responses as a result of changes in scenario variables. For estimation of choice models, we 

used the Swedish Commodity Flow Survey (CFS) from 2004/2005. Parameter estimates from this 

model were then used for estimation of a full random utility, i.e. stochastic, logistics model.  

We have setup a stochastic logistic model for two commodity groups, metal products and 

chemical products. Although the stochastic model is implemented for the two commodities, we 

have estimated multinomial logit models for 14 commodities for which a stochastic model could 

be implemented in the future. We compared transport cost and time elasticities for tonne-km 

between the stochastic and deterministic models for the two commodities, which has not been 

done before for such models. These elasticities differ between the two models, they are usually 

smaller in the stochastic model, confirming that the problem of potentially large demand 

responses (overshooting) is solved or at least reduced in the stochastic logistics model.  

In future endeavors, the difference between the two models could be further studied by looking at 

elasticities on other output measures such as vehicle-kilometer. Similar models can be estimated 

on the Swedish CFS 2009, the CFS 2016 that will be available in the end of 2017, the French 

ECHO data, the US CFS and hopefully also on future surveys of this kind in other countries. In 

estimating such models, other costs specifications (logarithmic, linear and logarithmic, splines) as 

well as more flexible substitution patterns between alternatives (e.g. nested logit, mixed logit) 

could be tested. 
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