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1. INTRODUCTION 

Disaggregate travel demand models have traditionally been applied by using 

sample enumeration, that is by calculating the probabilities for each available 

alternative and applying the computed probabilities to a sample of individuals 

(possible with expansion factors to make the sample representative of the 

population). In recent years, especially for activity-based travel demand 

models, microsimulation has emerged as an alternative way of applying the 

model to obtain demand forecasts (Walker 2005, Arentze and Timmermans 

2000, Goulias and Kitamura 1992). The key difference is that in micro-

simulation a discrete choice is allocated to each individual instead of a set of 

probabilities (that sum to 1 for the individual). This allocation takes place on 

the basis of random draws from some probability distribution. Having discrete 

outcomes per individual provides greater flexibility in model application.  

An advantage of microsimulation is that, since the decision making in 

microsimulation is agent based, policy makers will be able to identify with the 

agents and understand the choices they make.  

The strategic passenger model for Flanders (northern half of Belgium) version 

4 is currently being developed (see also de Bok et al. 2015, Verlinden et al. 

2015), and incorporates such a microsimulation approach. The general set-up 

of the model is to simulate the entire population of Flanders.  

Within the model, tours at the daily level will be simulated for the population of 

Flanders. These simulations are based on discrete choice models 

representing the behavior of the strategic passenger model for Flanders 

estimated mainly on the Flemish Travel Surveys. These models are then used 

in model application to calculate a probability for each travel alternative the 

agent can possibly choose, using characteristics of the location of origin and 

destination and the characteristics of the agent making the trip. From these 

alternatives and their corresponding probabilities, one alternative is chosen 

based on a random selection number and stored in memory as a result (this is 

commonly known as Monte Carlo simulation). 
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Most transport models assume that the stochastic component of the utility 

functions follows the Extreme Value Distribution type I (EV I). One way of 

doing the Monte Carlo simulation then is to take draws from the EV I for each 

alternative, calculate the utility for each alternative and select the alternative 

with the highest utility for that individual. This method was used by Horni 

(2013). Most applications however, take the random component of the utility 

functions at its mean value (zero) and calculate probabilities first from 

inserting the model coefficients in the logit probability formula. All alternatives 

together then form a cumulative distribution function for an individual. Then a 

draw from the uniform distribution between 0 and 1 is taken and this is 

mapped onto the cumulative distribution function, which  then determines 

which alternative will be chosen. We will also use this latter, more standard, 

method of  Monte Carlo simulation. 

The following problem occurs when implementing a Monte Carlo simulation; 

the results for an individual agent critically depend on the value that was 

randomly selected. This means that if the same simulation is replicated, with a 

different set of random numbers, the results will differ (Castiglione et al., 

2003). This is called the simulation error. Several authors have chosen to use 

fixed random number seeds (usually by individual: microseeding), so that 

exactly the same results can be obtained when a model run is redone (for an 

example, see Bowman et al. 2006). However, the basic problem remains that 

the results of the model depend on the random values that are selected: 

different random numbers would have given a different outcome, and the 

choice between sets of random numbers is as arbitrary as can be.  

Fortunately, these differences will generally even out when the results are 

evaluated for a large number of individual agents. However, on smaller scales 

(especially individual agents and for a choice problem with many alternatives), 

the decision may vary wildly and for comparison of different scenarios (e.g. 

policy scenario versus reference scenario) they can even be counter-intuitive. 

For instance, an agent who, in a reference run, chooses to drive by car to 

work, might switch to taking the bus in a policy scenario where the prices of 

public transport increase. This happens because the policy that changes the 

public transport alternative will also change the location of many other 

alternatives on the cumulative distribution function, even if these alternatives 

themselves are not changed. This counter-intuitive result may no longer be 

noticeable at a zonal or regional level, but nevertheless this is unwanted in a 

model, as it potentially undermines the trust of the policy makers in the model. 
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In this paper, we will address these issues from a methodological perspective. 

We will test the hypothesis that the statistical distribution responsible for the 

simulation error is the binomial distribution. If this is true, we can predict the 

size of the simulation error beforehand and therewith calculate the number of 

replications needed to get a sufficiently accurate outcome before the 

simulation is started. 

The paper is organized as follows. Firstly, we will give an overview over the 

available literature and the outcomes of our expert interviews. Then, we will 

characterize the simulation error from a mathematical perspective, using the 

strategic passenger model for Flanders as an example. We will provide a few 

equations to predict the number of replications needed to reach a certain 

accuracy in the model results. Finally, we will describe the implications of 

randomness in results of microsimulations. 

2. A BRIEF REVIEW OF THE LITERATURE OF SIMULATION ERROR IN 
TRANSPORT MODELS. 

The commonly adopted approach towards the fluctuations of results between 

different replications is to run the model for a number of replications (sets of 

random draws for each individual) and average the outcomes. Practical 

examples that average outcomes include: Castiglione et al. (2014), Miller et 

al. (2003), Vovsha et al. (2008), Freedman et al. (2006), Bowman et al. 

(2006), Veldhuizen et al. (2000), Cools et al. (2011), Yasmin et al. (2014). 

Castiglione et al. (2003), give an empirical example how the exact number of 

times the model needs to be ran critically depends on the level (geographical, 

population, mode) at which the results will be used in policy studies. As a 

general rule: the smaller the scale one is interested in, the more replications 

are needed for the results to reach a substantial accuracy. Usually, the spread 

in outcomes is evaluated after the model has been run a number of times, and 

it is determined empirically whether this number was sufficient.  

For instance, Castiglione et al. (2003) investigated the number of runs needed 

to get a reliable result from the San Francisco Model. Their results indicate 

than 10-20 runs are needed for individual zones, 1 run for a typical 

neighborhood and 1 run for a typical region. 

Cools et al. (2011) took a different approach, they investigate the simulation 

error for the activity based model FEATHERS (for Flanders). Using a 

regression analysis, they characterize the relative size of the estimation error. 

Their results confirm those of Castiglione et al 2003 in that the more detailed 

the result, the larger the estimation error. 
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Rasouli and Timmermans (2013) undertook a similar exercise, utilizing the 

Albatross transport model for the Netherlands. They sort their results 

according to the size of the traffic flow and find that the coefficient of variation 

is related to the traffic flow by (traffic flow)-0.3. 

3. EXPERT INTERVIEWS 

Since the published material on how to deal with simulation error in practice is 

limited, we did asked a number of international experts on the application of 

activity–based transport models three questions by email. The questions were 

(somewhat shortened here):  

Q1. Do you look at the Monte Carlo simulation outcomes at the individual 

level?  

Q2. Have you come across the issue of counterintuitive results between a 

reference case and a project case at the individual level?  

Q3. What are your experiences with simulation variance in forecasting? 

We obtained responses from John Bowman, Peter Vovsha, Mark Bradley and 

Kay Axhausen/Andreas Horni.  

The communis opinio among these experts clearly was that analysis of results 

at the individual level should be avoided when doing Monte Carlo simulation. 

This goes for comparing project scenarios against reference scenarios, but 

also for analyzing a single scenario or for a base year. 

In some cases the demand model is applied iteratively in combination with a 

traffic assignment. This means that several runs are done with the demand 

model anyway (which can be averaged for the final trip tables), so that there is 

not really a need to do multiple runs per individual (Vovsha et al. 2008). Other 

methods for obtaining stable results are microseeding and gradually freezing 

the results for groups of individuals.  

When aggregate study area outcomes are required it might suffice to sample 

1 out of 10 individuals and expand the results by 10. For detailed results on 

the other hand, supersampling (e.g. sample 10 days per individual) could be 

recommended (response from Bradley). 

4. THE STRATEGIC PASSENGER MODEL FOR FLANDERS 

Currently, the fourth generation of the strategic passenger transport models 

for Flanders is being developed. The fourth generation models will be 
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replacing the prevailing model 3.6.1. The fourth generation consists of a 

freight model (Grebe et al., 2016), and a passenger model.  

The main reason for improving on the previous generation model is that the 

last full population census was in 2001 and there is no new population census 

planned. This means that new sources of travel data will have to be used. 

Additionally, both base year and reference forecast year are being updated 

and the networks and assignment techniques are updated. 

The basic set up of the fourth generation of the strategic passenger transport 

models is therefore substantially different from the previous generation. As a 

first submodel, the entire Flemish population is being simulated (see de Bok et 

al., 2015). Starting from the available data, among others the population 

census of 2001, the evolution of the characteristics of the Flemish population 

is being simulated up until the base year, and continuing to the reference 

future year, e.g. 2020.  

Taking the simulated population as a starting point, the tours for the 

population will be simulated. The simulation is based on parameters estimated 

on the most recent travel surveys (OVG 3-4.5 and OWoWi, see de Bok et al., 

2015). The tours for each member of the population are simulated in a few 

separate sub models, including tour frequency choice and mode destination 

choice and their discrete results are stored in between. This is done in order 

to allow for flexible usage of the entire model: one can choose, in applications, 

to reuse certain intermediate results and continue from there on. 

5. SIMULATION ERROR ON THE RESULTS OF STRATEGIC PASSENGER 
MODEL FOR FLANDERS 

5.1 Tour Frequency Submodel 

For characterizing the variation of individual results of the strategic passenger 

model for Flanders, we first focus on the tour frequency submodel. In this 

submodel, each agent is given a choice between making 0, 1, 2 or 3 tours, by 

purpose. The choice for the number of tours is incremental; once an agent 

chooses to make at least one tour, the option to add another tour with the 

same purpose is offered. A set of random numbers is generated to evaluate 

the choice made by the agent. Theoretically, one agent can make a 

substantial amount of tours as 3 tours per purpose can be made per day, but 

given that the probabilities for making a second or third trip are generally low, 

this rarely happens in the simulation. This has immediate consequences for 

the number of tours generated for one zone: the total number possible is 

probably a lot larger than the number of trips actually generated. For studying 
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the scale of the simulation error, we now focus on the number of tours 

generated by an origin zone. 

For each agent, a set of random numbers is drawn to simulate their choices. 

In fact, this is not too different from rolling a dice for each agent. If, for 

instance, the probability of making a certain trip is one third, one can imagine 

that throwing 5 or 6 will simulate a tour for the agent, 1 to 4 will not. In the real 

simulation, chances are likely not nice round numbers that can be divided by 

1/6, but there is still a similarity with a weighted dice.  

The statistics of this dice-rolling experiment can mathematically be described 

by so-called binomial statistics. For this case in particular, since the number of 

tours generated is much smaller than the number of tours that can possibly be 

generated, the statistics are described by a special, more simple, form of 

binomial statistics: Poisson statistics. Since this is a  simpler form, we will first 

focus on the these statistics, but we will get back to the binomial statistics for 

the submodel for mode and destination choice in the next paragraph. 

Since the different agents in the model have different personal characteristics 

(gender, age, occupancy, etc.), each of the agents has their own dice, 

weighed to match their specific characteristics. The number of tours 

generated from one zone is a sum of all the outcomes of all the throws will all 

the different dices. We will test below whether the analogy with the 

mathematical Poisson distribution still holds in this case. 

For this paper, we are focusing on the variation of the results, once the 

experiment is replicated. Generally, this is characterized by the standard 

deviation on the results. One of the characteristics of the mathematical 

Poisson distribution is that the standard deviation (σ) on a result is simply the 

square root of the mean (μ) in the case of the strategic passenger transport 

models for Flanders: 

𝜎 = √𝜇 

 

In order to test whether this relation holds, we replicated the outcomes for the 

number of produced tours per zone of the submodel for tour generation 100 

times and calculated the standard deviation on the results. The results are 

shown in Figure 1.  
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Figure 1: standard deviation over production over 100 replications against the production. The best-fit power 
law has an index very close to 0.5.  

Figure 1 shows the standard deviations of the production for individual zones 

plotted against the average production itself. A power-law fit to these points 

gives an index very close to 0.5, this is consistent with the distribution being 

Poissonian. From the results in Figure 1, we calculated both the square root of 

the mean and the standard deviation of the productions. We plotted those in 

Figure 2.  If the distribution is really Poissonian, we would expect the square 

root of the mean for each zone to be similar to the standard deviation. Figure 

2 shows this exact relation.  

 
Figure 2: standard deviation against sqrt(mean) of production from all zones for 100 replications. 

We can see that the linear fit to the data points has a slope very close to one, 

and the measure of variability (R) is close to 1. The fact that the slope is very 
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close to one, is an indication that the distribution is indeed very close to a 

Poisson distribution.  

To keep the model as flexible as possible, the results will need to be 

discretized and stored in memory. This will mean that we do not save 

averaged outcomes, but only discrete outcomes. This is implemented as 

follows: per zone and purpose, the average production is determined. From all 

replications that were used for determining the average, one is chosen that 

has the closest production to the average of this particular zone and purpose. 

This will give us a set of discrete outcomes that will be fed into the mode 

destination model.  

5.2 Mode Destination Model 

Each of the tours generated in the previous module, will be given a mode and 

destination combination1. This implies that for each tour, there are 6 (modes) 

times 6756 (zones within Flanders) is 40536 choices. This is the maximum, as 

some modes are not always available. For instance, the mode walking is 

available only when the round trip distance is less than 15 km. This is 

equivalent with rolling a weighted dice with 40536 sides for each person. The 

standard deviation of the simulation error for this submodel is described by 

binomial statistics, and has therefore a slightly different form: 

σ = √μ √1 −
μ

N
 

Here, N is the total number of times the dice was rolled. Note that as long as μ 

is small compared to N, this equation simplifies to the equation from the 

previous paragraph. Since the number of tours is known and finite, the 

number of tours choosing one out of the 40536 is finite. The effect will be even 

stronger: the number of tours that has a sizeable chance for choosing a 

certain mode-destination combination is rather limited, since people prefer to 

travel not too long, or some modes might simply be unavailable from the 

location of departure. 

The term √1 −
μ

N
 can be can be calculated exactly, but this is somewhat 

complicated. Since the number of available alternatives is still large, we 

expect √1 −
μ

N
  to be relatively close to 1. For evaluating whether the standard 

                                                      
1
 Note that in the final version of the model, the destination and mode will be simulated in two 

separate modules. The general principles described in this paragraph and paper will remain valid, 
however. 
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deviation matches that of a binomial distribution, we will just expect the 

standard deviation to be slightly less than the square root of the mean and 

therefore even be relatively close to a Poissonnian distribution. Figure 3 

shows the results for all 6 modes, on destination level in a plot similar to 

Figure 2. Figure 3 shows, again that the square root of the mean is very close 

to the standard deviation of the results of the 100 replications. It gives a slight 

overestimation (coefficient in front of x is less than 1 for all modes, especially 

for walking), but this can be explained by taking into account the  √1 −
μ

N
 term. 

  

  

  
Figure 3: x-axis shows the square root of the number of times a certain destination was chosen, the y-axis 
shows the standard deviation on the number of times a certain destination was chosen. The model was ran for 
100 replications.  

Figure 2 and Figure 3 give a very strong indication that we can predict the 

standard deviation of the results of multiple replications by taking the square 

root of the mean outcome. This is  exactly what one would expect for a 

binomial distribution where the number of alternatives is much larger than the 

number of times a certain alternative was chosen. 
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Again, also for the mode-destination sub model, the strategic passenger 

model for Flanders requires us to save the results in a discretized manner. For 

the discretization, we calculate the average destination pattern of tours 

departing from a certain zone for a certain purpose. From all the replications 

that went into calculating this average, we choose the replication that provides 

the closest match to the average pattern. These are the discrete results that 

will be used.  

6. HOW MANY REPLICATIONS DO WE NEED? 

There are substantial benefits of using the underlying statistics to calculate the 

standard deviations. 

First of all, being able to predict the standard deviation of a result on a typical 

outcome puts us in a great position to determine the number of replications 

that need to be used to get reliable results. The 95% confidence intervals 

(CI95) of an estimate of a mean from nit replications is the following: 

CI95 =
1.96σ

√nit

=
1.96√μ

√nit

 

For example, if you expect the number of people taking the bus from zone A 

to zone B is about 10. However, you want to know this number with a CI95 of 

1. This means you will have to run the model for 1.962*10 = 38.42 replications, 

rounded off to 39. In general, you would first need to determine which is the 

smallest scale (for example the smallest number of tours taking a certain 

mode from zone A to zone B) you will be interested in, as this is going to be 

the result with the largest uncertainty.  

Also, if the model needs to be ran for two scenarios, one can calculate how 

many replications are needed to determine a statistically significant difference 

between the two scenarios. When we focus on a certain segment in the 

results (say, the number of agents taking the bus for a commuting trip 

between Antwerp and Brussels), scenario 1 gives μ1 for  nit1 replications and 

scenario 2 gives μ2 for  nit2  replications. The difference between both 

scenarios is obviously μ1 −  μ2. The CI95 of this result is given by: 

CI95 =  1.96√
μ1

nit1
+

μ2

nit2
 

7. IMPLICATIONS OF RANDOMNESS 
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The international experts we consulted in section 3 advised that, in the context 

of microsimulation, results should not be analysed at an individual level, 

because of the randomness that will have a too big influence at the most 

detailed level. Zonal or study area wide forecasts are possible with 

microsimulation. The question is where the boundary between these two 

situations will be (e.g. can we predict for a population segment?).   

As described before, randomness in results can have some unwanted 

implications. For instance, some results can become counter-intuitive, 

therewith potentially undermining the trust of the policy maker in the model.  

The rule for determining the standard error on the average outcomes give 

some handle on when to trust differences between the outcomes on scenarios 

at face value. This, however, can only be used once we focus on results of the 

averages of a number of replications. 

The strategic passenger model for Flanders usually produces discretized 

results. As we select the result that is closest to the mean for a certain 

subselection (often for a certain zone and purpose), a difference in the 

selected results for this subselection for two scenarios is most likely a real 

difference. However, once we start evaluating the results of the two scenarios 

on a scale smaller than the subselection used for determining the best-fit 

replication the differences are probably not significant.  

As an example, we run 100 replications of a certain model for two scenarios. 

In scenario 1, zone A produces 700 commuting tours and scenario 2 produces 

2% more commuting tours: 714. We know that the standard error on this 

difference is CI95 = 1.96√
700

100
+

714

100
= 7.4  This difference therefore is 

significant at more than a 95% level. Also, scenario 1 produces 500 

commuting trips for agents with the status “active in work force”, and scenario 

2 produces only 10% more: 505. Given that this was not a subselection used 

for selecting the best replication, the aforementioned equation does not apply 

and we cannot determine whether this difference is significant. However, we 

do know that the CI95 is at least as good as the CI95 for one replication. 

Therefore, we can judge whether the difference is significant by using the 

following equation: CI95 = 1.96√
500

1
+

505

1
= 62. Hence, we cannot conclude 

that the difference is significant.  

In contrast, if we focus on a selection larger than the subselection used for 

selecting the best replication, for instance, the number of tours produced from 
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a certain zone, for all purposes the equation for CI95  is valid again. As a 

general rule, results of microsimulation models can be trusted, as long as you 

do not focus on results on too small a scale. 

In order to minimize the effects of the simulation error on small scales 

however, the strategic passenger model for Flanders does use the same 

starting seed for each zone and replication, therewith ensuring that, as long as 

nothing changes, the tours simulated for the agents will be the same in each 

replication. This will partially prevent counter intuitive changes in simulated 

choices, but it will not be prevented for all cases. 

CONCLUSIONS AND RECOMMENDATIONS 

In this paper, we showed that the results of the strategic passenger model for 

Flanders can be characterized by a binomial distribution. This results in a 

simple equation for the 95% confidence interval on the results.  

This is particularly useful for an a priori estimation of how many replications 

are necessary for the desired precision of outcomes. First of all, determine the 

smallest number of travelers in a certain category you are interested in, then 

define how accurately you need to know them. This will immediately give you 

the number of replications needed for producing the result in the desired 

accuracy. 

 

BIBLIOGRAPHY 

Arentze, T., and Timmermans, H. (2000). Albatross: a learning based 
transportation oriented simulation system. Eindhoven: Eirass. 

Bowman, J.L., Bradley, M.A. and Gibb, J. (2006) The Sacramento activity-
based travel demand model: estimation and validation results. Paper 
presented at the European transport Conference, Strasbourg. 

De Bok, M., De Jong, G., Baak, J., Helder, E., Puttemans, C., Verlinden, K., 
Borremans, D., Grispen, R., Liebens, J. and Van Criekinge, M. (2015). A 
Population Simulator and Disaggregate Transport Demand Models for 
Flanders. In Transportation Research Procedia, Current practices in transport: 
appraisal methods, policies and models – 42nd European Transport 
Conference Selected Proceedings, Vol 8, Pages 168–180. 

Castiglione, J., Freedman, J. and Bradley, M. (2003), Systematic Investigation 
of Variability due to Random Simulation Error in an Activity-Based 



 

© AET 2015 and contributors 

13 

Microsimulation Forecasting Model. In Transportation Research Record: 
Journal of the Transportation Research Board, No. 1831, Transportation 
Research Board of the National Academies, Washington, D.C.,  pp. 76–88.   

Castiglione, J., Bradley, M. and Gliebe, J. (2014). SHARP 2 Capacity Project 
C46 Activity-Based travel demand models: A primer, Preliminary draft final 
report for the Strategic Highway Research Program, Transportation Reserach 
Board of The National Academies. 

Cools, M., Kochan, B., Bellemans, T., Janssens, D., and Wets, G. (2011). 
Assessment of the effect of micro-simulation error on key travel indices: 
Evidence from the activity-based model feathers. 

Daly, A. (1998). Prototypical sample enumeration as a basis for forecasting 
with disaggregate models. In Transport planning methods. Proceedings of 
seminar D held at AET European Transport conference, Loughborough 
University, , UK, 14-18 September 1998. VOLUME P423. 

Freedman, J., Castiglione, J., and Charlton, B. (2006). Analysis of new starts 
project by using tour-based model of San Francisco, California. Transportation 
Research Record: Journal of the Transportation Research Board, (1981), 24-
33.  

Goulias, K. G., and Kitamura, R. Travel Demand Forecasting with Dynamic 43 
Microsimulation. In Transportation Research Record, No. 1357, 
Transportation Research 44 Board of the National Academies, Washington, 
D.C., 1992, pp. 8–17. 

Grebe, S., de Jong, G., Borremans, D., van Houwe, P., and Kienzler and H. P. 
(2016). Redeveloping the Strategic Flemish Freight Transport Model. In 
Commercial Transport (pp. 3-21). Springer International Publishing.  

Horni, A. (2013). Destination choice modeling of discretionary activities in 
transport microsimulations (Doctoral dissertation, Diss., Eidgenössische 
Technische Hochschule ETH Zürich, Nr. 21496, 2013).  

Miller, E. and Roorda, M. (2003). Prototype model of household activity-travel 
scheduling. Transportation Research Record: Journal of the Transportation 
Research Board, (1831), 114-121.  

Rasouli, S., and Timmermans, H. (2013). Probabilistic forecasting of time-
dependent origin–destination matrices by a complex activity-based model 
system: effects of model uncertainty. International Journal of Urban Sciences, 
17(3), 350-361.  

Veldhuisen, J., Timmermans, H., and Kapoen, L. (2000). Microsimulation 
model of activity-travel patterns and traffic flows: specification, validation tests, 
and Monte Carlo error. Transportation Research Record: Journal of the 
Transportation Research Board, (1706), 126-135. 



 

© AET 2015 and contributors 

14 

Verlinden, K., Puttemans, C., de Bok, M., de Jong, G., and Helder, E. (2015) 
“Micro-simulation with discrete choice models: application in Flanders”, these 
ETC proceedings. 

Vovsha, P., Donnelly, R. and Gupta, S. (2008). Network equilibrium with 
activity-based microsimulation models: the New York experience. 
Transportation Research Record: Journal of the Transportation Research 
Board, (2054), 102-109.  

Walker, J. (2005). Making household microsimulation of travel and activities 
accessible to planners. Transportation Research Record: Journal of the 
Transportation Research Board, (1931), 38-48.  
 
Yasmin, F., Morency, C. and Roorda, M. J. (2014). Macro-, Meso-, and 
Microlevel Validation of an Activity-Based Travel Demand Model. In 
Transportation Research Board 93rd Annual Meeting (No. 14-1257). 


