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Abstract 

This paper argues that there is a discrepancy between what Logsum-measures of accessibility 

aim to measure (experienced utility) and what they actually measure (decision-utility). The latter 

type of utility refers to the evaluation of an alternative that is used to arrive at a decision, while 

the formerrefers to the evaluation of a chosen alternative after the choice has been made. We 

argue that accessibility should preferably be conceptualized and operationalized in terms of 

experienced utility, but that this type of utility is difficult to measure. Motivated by these 

observations we show, taking the Logsum as a starting point, how its building blocks (parameters 

estimated from choice patterns) can be used to construct closed-form and easy to compute 

accessibility measures that provide an approximation of experienced utility.Using a small-scale 

case-study building on departure time-choice data, we illustrate the working of the developed 

accessibility-measures and highlight how they differ from the Logsum-approach. 

Keywords: Accessibility; Logsum; Experienced utility; Decision-utility; Regret 
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1. Introduction 

Accessibility is “a slippery notion” (Gould, 1969). It should therefore come to no surprise that it 

has been measured in numerous ways (see Geurs & van Wee (2004) for a relatively recent 

overview). One of the more popular accessibility-measures – both in- and outside academia –is 

the Logsum, which over the years has been used successfully for the appraisal of various land-

use/transport policy strategies (e.g. Handy &Niemeier, 1997; Waddell et al., 2007; de Bok, 2009; 

Geurs et al., 2010). The Logsum has been successfully incorporated in a number of transport 

model systems, including TRESIS (Hensher et al., 2004) and LUSTRE (e.g., Safirova, 2007).1 It 

is widely acknowledged (e.g. de Jong et al., 2007; Chorus & Timmermans, 2009) that this 

popularity arises from the Logsum’s theoretical advantages over more ad-hoc accessibility 

measures. More specifically, Logsum-measures provide a closed-form expression for 

accessibility based on a solid foundation in discrete choice theory (Ben-Akiva & Lerman, 1985) 

and neo-classical consumer surplus theory (Small & Rosen, 1981; McFadden, 1981). 

The Logsum
2
 is defined as the expected maximum utility associated with a traveler’s choice set. 

The expectation refers to the fact that the analyst only ‘knows’ the traveler’s utilities up to a 

random error. As such, he or she does not know for sure which alternative will be chosen, and 

what will be the exact utility associated the chosen alternative. At least implicitly, this definition 

suggests that the utility a traveler experiences upon executing an alternative from the choice set 

(i.e. by traveling) is measured, which would indeed constitute an intuitive measurement of 

accessibility. However, the Logsum-measure of accessibility is in fact not necessarily based on 

the utility travelers actually experience, but on the utility that has presumably driven their 

choice-behavior (in the form of parameters estimated from their choices). In the behavioral 

economics community, this latter type of utility is generally called decision utility, while the 

former type of utility which is referred to as experienced utility (Kahneman et al., 1997). The 

implicit assumption underlying the Logsum-notion is that decision utilities (applied by the 

traveler to arrive at a decision) are the same as experienced utilities (experienced by the traveler 

during the execution of alternatives). However, it goes without saying that these utilities refer to 

intrinsically different behavioral notions. 

                                                             
1
 On the other hand, even though many transport and land use/transport models include logsums, the use of logsums 

in project appraisal is not standard practice (de Jong et al., 2007). 
2
 See section 2 for a more in-depth formal presentation of the Logsum-approach to measuring accessibility. 
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It goes without saying that accessibility measures (or welfare measures in general) should 

preferably be based on experienced utility, not decision utility. However, it is also clear that 

direct measurements of experienced utility are very hard to obtain in a sound and internally 

consistent way; hence most economists’ preference for working with the concept of decision 

utility, as it allows them to use choices as a rigorous unit of measurement (e.g. Stigler, 1950). In 

sum, there appears to be a discrepancy between what the Logsum actually measures (decision 

utility), and how it is used and interpreted in the context of accessibility appraisal (as a measure 

of experienced utility).  

This paper aims to show how this discrepancy can be resolved to some extent: we take the 

Logsum as a starting point, and show how its building blocks (parameters estimated from choice 

patterns) can be used to construct closed-form and easy to compute accessibility measures that 

provide an approximation of experienced utility. We take a two-step approach: first, in line with 

a large body of literature from the field of behavioral decision theory (e.g. Payne et al., 1999; 

Lichtenstein & Slovic, 2006) we assume that the preferences a decision-maker uses to arrive at a 

decision are likely to differ to some extent from preferences used to assess the performance of a 

chosen alternative. Second, we allow for the situation where evaluation-rules may differ between 

the situation where an alternative is chosen and the situation where a chosen alternative is 

executed. Specifically, we propose a closed-form accessibility measure that assumes choices 

may be based on a regret-minimization evaluation rule instead of a utility-maximization 

evaluation rule, while the performance of executed alternatives is evaluated based on a utility-

maximization evaluation rule
3
.  

The choice for considering a regret-based decision-making perspective is based on two 

arguments: first, there is a large body of literature from various corners of the social sciences 

supporting the hypothesis that the minimization of anticipated regret is a very important 

determinant of choice-behavior (e.g., Loomes and Sugden, 1982; Simonson, 1992; Connolly, 

                                                             
3
 It may of course be hypothesized that in addition to decisions also experiences are based on regret-based, rather 

than utility-based rules. However, doing so would break the elegant formal relation between accessibility on the one 

hand and welfare economic theory on the other hand (such as the translation of expected utility change into 

consumer surplus change in monetary terms). Since these links are crucial for the assessment of benefits associated 

with (land use-) transport policies, we in this paper work with the hypothesis that experiences are evaluated using 

utility-based rules, while decisions may be based on regret-based as well as utility-based rules. 
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2005). Take for example Coricelli et al. (2005) who, using neuroimaging techniques, show that 

the area of the human brain that is active when decision-makers experience regret after having 

made a (poor) choice, is also highly active split seconds before they make a choice. In their 

words “anticipating regret is a powerful predictor of future choices”. Second, and this is a more 

pragmatic reason for adopting a regret-based approach, a generic regret-based discrete choice-

modeling approach for the analysis of risky as well as riskless choice
4
 has recently been 

developed and successfully applied in a variety of travel choice-contexts (Chorus, 2010). This 

Random Regret Minimization-approach has important formal similarities with conventional 

utility-based discrete choice-approaches (such as the MNL-model (McFadden, 1974)) and as 

such can be relatively easily combined with these conventional approaches to form integrative 

accessibility measures. 

The remainder of this paper is organized as follows: section 2 discusses the Logsum-measure. 

Section 3 presents an accessibility measure that is based on the notion that preferences are 

volatile to some extent. Section 4 presents an accessibility measure that assumes a regret-based 

evaluation rule at the level of decisions, and a utility-basedevaluation rule at the level of 

experiences. Section 5 illustrates the working of the developed accessibility-measures using a 

small-scale case-study. Section 6 presents conclusions as well as recommendations for future 

research. 

 

2. The Logsum as a measure of accessibility benefits 

Assume the following choice situation: a decision-maker faces a set of J alternatives, each being 

described in terms of M attributes 
mx . Random Utility Theory (McFadden, 1974) postulates that a 

decision-maker chooses alternative i from the set when its random utility 
iU is larger than that of 

                                                             
4
 It is important to note here that, although most people would associate the notion of regret with risky choice in 

particular, it is also readily applicable to riskless choices (i.e., choices where the values of the attributes of 

alternatives are known with certainty), as long as alternatives are defined in terms of multiple attributes. This 

follows from the fact that the process of making tradeoffs between different attributes of different alternatives 

implies that – in most situations – one has to decide to live with a suboptimal performance on one or more attributes 

in order to achieve a satisfactory outcome on other attributes. It is this situation that can be postulated to cause regret 

at the level of specific attributes (see Section 4.1 for a more formal and detailed exposition of this argument). 
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all other alternatives in the set. Random utility consists of a deterministic part 
iV  and a random 

error 
iε , the latter representing the inability of the analyst to faultlessly assess the decision-

makers utility (in other words: it represents unobserved heterogeneity among decision-makers). 

Deterministic utility in turn is generally formulated as a linear-additive function of tastes 
mβ and 

attributes 
m
xalthough more complicated forms are possible. In notation: 

1..

i i i m im i

m M

U V xε β ε
=

= + = +∑ (note that we ignore in this and subsequent equations the subscript 

for the decision-maker, for clarity of presentation). Under the assumption that 
i

ε  is i.i.d. Extreme 

Value Type I-distributed with variance equaling π
2
/6, choice probabilities 

i
P are given by elegant 

logit-probabilities (McFadden, 1974): ( ) ( )
1..

exp exp
i i j

j J

P V V

=

= ∑ .  

In the context of Random Utility Theory, accessibility (Acc) has been defined as the expected 

maximum utility associated with the decision-maker’s choice set. Importantly: the expectation 

refers to imperfect knowledge from the side of the analyst, not from the side of the traveler. 

Under the prevailing error-term assumptions, this expected maximum in turn is given by the 

natural logarithm of the denominator of this fraction, which is called the Logsum (e.g., Ben-

Akiva & Lerman, 1985):  

Acc = { } { }( ) ( ) ( )1.. 1..

1..

max max ln exp
j J j j J j j

j J

E U U f d V C= =

=

 
   = ⋅ = +       

∑∫
ε

ε ε   (1)  

The accessibility benefits of a given land use-transport strategy can then be computed by taking 

the difference in the accessibility with and without the implementation of the strategy. When this 

is done, the constant C will cancel out of the equation. It may be noted that, under the fairly 

restrictive assumption that utility increases linearly in income, accessibility benefits as measured 

by the Logsum can very easily be translated to monetary terms by just dividing it by the marginal 

utility of income (for which one can use the estimated cost coefficient). In this paper, we refrain 

from this translation and focus on accessibility benefits in terms of utility-changes only. 

 

3. Incorporating changes in preferences between choice and experience 
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A traveler’s preferences may differ between the moment of choice and the moment of execution 

of the chosen alternative. There may several reasons for this. First, it is widely acknowledged in 

the behavioral decision-making literature that people often construct their preferences when 

faced with a choice, rather than simply applying already existing preferences to the choice 

situation at hand (e.g. Payne et al., 1999; Lichtenstein & Slovic, 2006). As a result, there may be 

a difference between these constructed preferences and those that apply when an experience is 

evaluated without the aim of making a choice. Especially when one is using stated data to 

estimate preferences (like in the SC-experiment used in this study), this difference may be 

substantial due to the possible existence of all sorts of artificial effects on preference formation 

that are specific to the particular experimental set-up (see Hensher (2010) for a recent review of 

such effects). Second, preferences may also change over time due to intrinsic stochasticity, 

especially when there is a time gap between the moment of choice and the moment of experience 

(e.g. Hey, 1995; Hoeffler & Ariely, 1999). It is worthwhile at this point to note that a traveler 

that makes the same trip frequently (e.g., his or her commute to and from work) can of course 

learn over time how attractive a given option is, which would imply a decreasing (over time) 

volatility of preferences. However, in the context of the introduction of new or improved land 

use-transport services there is likely going to be a substantial amount of preference volatility, 

especially shortly after the introduction. For obvious reasons, learning effects are not applicable 

when stated data are used, but they may be important in the context of revealed data-analysis. 

In line with Manski’s ideas (1977), we adopt the perspective that within a discrete choice-model 

this volatility of preferences is captured in the error term. More specifically, we assume that the 

extent to which preferences are invariant between the moment of choice and the moment of 

experience is captured by stable (invariant) betas, and that the extent to which preferences are 

volatile is captured by the notion that the error associated with an alternative’s utility may 

differbetween the moment of choice and the moment of experience. 

In notation, the above line of reasoning can be put as follows, in the context of the choice 

situation described in section 2: again, when faced with a choice from J alternatives, each being 

described in terms of M attributes 
m
x , the traveler uses a preference-set represented by estimable 

parameters 
m

β (for m = 1 … M ) and a random error 
i

ε  (i.i.d.-Extreme Value Type I-distributed) to 

evaluate some alternative i. When the same alternative is evaluated during or after experiencing 
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it, the same traveler uses a preference-set represented by the same parameters 
m

β(for m = 1 … M) 

but a different random error νi . This error is also drawn from an i.i.d.-Extreme Value Type I-

distribution with the same variance as that of 
i

ε . The error is drawn independently from 
i

ε .  

The accessibility associated with the choice set is again taken to be the expected utility a traveler 

derives from the choice set, which is in turn defined as the utility he or she derives from 

experiencing the alternative chosen from this set. Since the choice is only known up to a 

probability, accessibility is defined by integrating out the two mutually independent error-

vectors. This implies the following formulation of accessibility: 

( )( ) ( )( ) ( ) ( )

( ) ( )( )

1..

1..

, ,

      

j j

j J

jj
j J

Acc I U f f d d

P V C

=

=

  
= ⋅ ⋅  

   

 = ⋅ + 

∑∫ ∫

∑

ε ν

β ε β ν ε ν ε ν

β β

     (2) 

Here, vector β contains parameter estimates (obtained from estimating the MNL-based choice 

model on observed choices).
jI is an indicator function which equals one if, given the vector of 

estimated parameters and the vector of random errors ε, alternative j’s random utility 
j

U is larger 

than the utilities of all other alternatives in the set. , ,
j j j

U V P  are as defined in section 2 in the 

context of alternative i. 

The crucial difference between this formulation and the Logsum is that  the expectation of the 

maximum decision-utility is taken separately from the expectation of experienced-utility, 

because both are a the result of integration over different errors (yet drawn from the same 

distribution with the same variance). In case the two errors are assumed to be equal to one 

another (implying the assumption that decision-utility equals experienced utility), this 

formulation reduces to the conventional Logsum-measure presented in section 2. 

 

4. Incorporating changes in evaluation rules between choice and experience 
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This section takes the difference between decisions and experience one step further: in addition 

to the assumption that preferences are assumed to differ between the moment of decision and the 

moment of experience, we now also allow for the possibility that evaluations preceding decisions 

may be based on a different rule than evaluations during or following experiences. Although 

many alternative decision-rules may be applicable, we here focus on the example where the 

evaluation-rule used for arriving at a decision may be based on regret-minimization premises 

rather than utility maximization premises
5
, whereas the evaluation rule used to judge the 

performance of a chosen alternative during execution is utility-based. That is, while Eq. 2 

assumes RUM-based decision-making and RUM-based experience evaluation, our next 

accessibility equation assumes RRM-based decision-making and RUM-based experience 

evaluation. It should be noted that the general issue we aim to highlight (evaluation rules may 

differ between the moments of decision and experience) is much broader than the regret-utility 

contrast used in the remainder of this paper. Section 4.1 presents the Random Regret 

Minimization (RRM)-approach to discrete choice modeling, followed by section 4.2 which 

integrates RRM with the concept of experienced utility. 

 

4.1 Regret-Minimization as a choice rule
6
 

Assume the same choice situation used earlier in this paper: a decision-maker faces a set of J 

alternatives, each being described in terms of M attributes 
m
x . Assume also that the attributes are 

comparable across alternatives. The RRM-model postulates that when choosing between 

alternatives, decision-makers aim to minimize anticipated random regret, and that the level of 

anticipated random regret that is associated with a considered alternative i is composed out of a 

systematic regret 
iR and an i.i.d. random error 

i
ε  which represents unobserved heterogeneity in 

regret and whose negative is Extreme Value Type I-distributedwith variance π
2
/6. 

                                                             
5
 Whether or not this assumption is reasonable, will of course have to be determined on a case-by-case base; an 

intuitive candidate for selecting one evaluation rule (used for arriving at a decision) over another one is the goodness 

of fit of different evaluation rules (translated into a discrete choice-model form) with relevant choice data. 

6
 See Chorus (2010) for a more detailed introduction to the RRM-approach, as well as an in-depth theoretical and 

empirical comparison with the RUM-approach to travel choice modeling. 
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Systematic regret is in turn conceived to be sum of all so-called binary regrets that are associated 

with bilaterally comparing the considered alternative with each of the other alternatives in the 

choice set. The level of binary regret associated with comparing the considered alternative iwith 

another alternative j equals the sum of the regrets that are associated with comparing the two 

alternatives in terms of each of their M attributes. This attribute level-regret in turn is formulated 

as follows: ( )( )ln 1 expm

i j m jm im
R x xβ↔

 = + ⋅ −  . Note that also the sign of parameters is estimated 

(i.e., no a priori sign expectations need to be formulated). See Figure 1 for a visualization of this 

formulation of attribute-level regret.Systematic regret then becomes: 

i
R = ( )( )

1..

ln 1 exp m jm im

j i m M

x xβ
≠ =

 + ⋅ − ∑ ∑ . Acknowledging that minimization of random regret is 

mathematically equivalent to maximizing the negative of random regret, choice probabilities 

may be derived using a variant of the multinomial logit-formulation: the choice probability 

associated with alternative i equals ( ) ( )
1..

exp expR

i i j

j J

P R R

=

= − −∑ .  

 

m

i jR ↔

xjm - xim

 
mβ

 
mβ

 
mβ

 

Figure 1: A visualization of attribute level-regret ( )( )ln 1 expm

i j m jm im
R x xβ↔

 = + ⋅ −   
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Note that the resulting likelihood function is smooth and that the model can be coded and 

estimated using standard discrete choice-software packages. Recent studies (Chorus, 2010; 

Hensher et al., under review) have highlighted the promising empirical performance of RRM 

(also when compared to equally parsimonious RUM-models) in the context of car-type choices, 

mode/route choices, parking choices and shopping location-choices. As discussed more in-depth 

in Chorus (2010), the main difference between RRM and its utilitarian (and equally 

parsimonious) counterpart – RUM’s linear-additive MNL-model – lies in the fact that the RRM-

based MNL-model does not exhibit the IIA-property (which states that the choice-probability 

ratio of any two alternatives is unaffected by the presence and performance of a third 

alternative), even when errors are i.i.d. That is, the ratio of choice probabilities of any two 

alternatives i and j depends on the performance of these alternatives relative to one another as 

well as relative to each other alternative k in the set. This follows directly from the specification 

of the regret-function, which postulates that the regret associated with any alternative in the set is 

a function of its performance relative to each of the other alternatives available.  

Second, in contrast with linear-additive utilitarian choice-models, the model based on regret 

minimization implies semi-compensatory behaviour. This is a direct result of the convexity of 

the regret-function depicted in Figure 1: improving an alternative in terms of an attribute on 

which it already performs well relative to other alternatives generates only small decreases in 

regret, whereas deteriorating to a similar extent the performance on another equally important 

attribute on which the alternative has a poor performance relative to other alternatives may 

generate substantial increases in regret. As a result, the extent to which a strong performance on 

one attribute can make up for a poor performance on another depends on the relative position of 

each alternative in the set.More specifically, and in line with empirical evidence from the field of 

consumer choice (e.g. Simonson, 1989; Wernerfelt, 1995; Kivetz et al., 2004), RRM captures a 

substitution effect called the compromise effect. This effect states that alternatives with an ‘in-between’ 

performance on all attributes, relative to the other alternatives in the choice set, are generally favored by 

choice-makers over alternatives with a poor performance on some attributes and a strong performance on 

others. 

 

4.2 Accessibility when decisions are based on regret-minimization 
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Take a set of parameters R

m
β resulting from estimation of an RRM-model, and a set of parameters 

U

mβ resulting from estimation of its RUM-based counterpart on the same data. Denote unobserved 

preferences for alternative i by 
iε (unobserved preference at the time of the decision) and 

νi(unobserved preference at the time of the experience), respectively. We assume that νi and the 

negative of 
iε  are drawn from independent i.i.d.-Extreme Value Type I-distributions with 

variance π
2
/6.  Building on the formulations presented in section 3, accessibility derived from a 

choice set by a traveler that chooses based on regret-minimization, but evaluates chosen options 

in terms of their utility, can be written as follows: 

( )( ) ( )( ) ( ) ( )

( ) ( )( )

1..

1..

, ,

      

R

j j

j J

R

j j

j J

Acc I U f f d d

P V C

=

=

  
= ⋅ ⋅  

   

 = ⋅ +
 

∑∫ ∫

∑

R U

ε ν

R U

β ε β ν ε ν ε ν

β β

    (3) 

Symbols are as presented directly after equation (2). Vector R
β contains parameter estimates 

obtained from estimating the regret-based model on observed choices, U
β contains parameter 

estimates obtained from estimating the utility-based model on the same observed choices. R

j
I is an 

indicator function which equals one if, given the vector of estimated parameters and conditional 

on the vector of random errors ε, alternative j’s random regret 
j

Ris smaller than the regrets of all 

other alternatives in the set. , , R

j j j
R V P  are as defined previously. 

 

5. An illustrative case-study 

This section shows how the three accessibility measures presented in the previous sections 

(equations (1), (2) and (3) respectively) may differ from one another, in the context of estimation 

results based on departure time choice data. The emphasis here is on showing that the three 

measures may lead to different planning decisions, although an attempt is also made to discuss in 

what ways and to what extent the measures differ, and what are the causes of these differences. 

However, since it is to be expected that the ways in which the three measures differ is highly 
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dependent on prevailing preference structures and choice set composition, we refrain from 

making too many general statements based on the one case study presented here. 

Data is collected using a Stated Choice-experiment, performed for the Dutch Ministry of 

Transport, Public Works and Water Management (currently: Ministry of Infrastructure and 

Environment). Travelers were asked to choose between three departure times for their daily 

commute: they could choose to depart at or close to their regular hour, or considerably earlier or 

later (and face reduced travel times). Each of the options is defined in terms of travel time (in 

minutes, for both the morning and the evening), time spent in traffic jams (in minutes, for both 

the morning and the evening) and resulting amount of time at work (minutes). In light of this 

paper’s scope, we do not elaborate the setup of the experiment and characteristics of the response 

group. See de Jong et al. (2003) for a detailed discussion of these and related aspects. We used 

for our analyses only commuters that had indicated that traveling by public transport was not an 

option for them. In other words, their choice set consisted of the three presented departure time-

alternatives only. This subset consisted of 883 choices, which were analyzed using the free 

software package BIOGEME (Bierlaire, 2003, 2008). Table 1 shows results of the estimated 

MNL-models (RRM- and RUM-based).  

Note that, to reflect the panel nature of the dataset (each respondent made multiple choices), 

robust t-values are reported. These are computed based on the robust variance-covariance matrix 

of estimates (or: sandwich estimator), and allow for non-severe misspecification errors related to 

the characteristics of the postulated distributions for the error terms (see Bierlaire (2008) for an 

in-depth formal treatment of how to compute these t-values). In our case, the fact that we assume 

independent errors for different choices made by the same individual constitutes such a non-

severe misspecification. Note also that in this model of departure time choice, accessibility will 

include time of day: if peak and off-peak travel times would be equal, most commuters would 

travel in the peak.In line with expectations, departing at another than the regular time comes with 

a penalty, as implied by the large and significant constant for regular departure time. Time spent 

in traffic jams during the morning as well as the evening commute is valued negatively. Other 
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parameters are insignificant at any reasonable level of significance. The RRM-model seems to 

have a very slight edge over the RUM-model, although the difference is negligible
7
.  

 

Table 1: RRM-MNL versus RUM-MNL 

 
RRM RUM 

Attribute beta t-value beta t-value 

Constant (regular departure time) 1.48 16.11 1.47      16.02       

Travel time (morning) -0.00376 -1.27       -0.00579 -1.48       

Time spent in traffic jam (morning) -0.0264   -4.62       -0.0377   -4.67       

Travel time (evening) -0.00206 -0.37       -0.00318 -0.36       

Time spent in traffic jam (evening) -0.0168   -2.35       -0.0258   -2.20       

Resulting amount of time at work 0.000366 0.36        0.000624 0.41        

 

Final-Loglikelihood 

Adjusted rho-square 

 

-796.306 

0.173 

 

-797.435 

0.172 

 

Based on these estimation results, the three different measures of accessibility can be computed 

by applying equations (1), (2) and (3) – only estimates reported in bold in Table 1 are used for 

                                                             
7
 Note that a Ben-Akiva & Swait (1986) test for nonnested models showed that the difference in fit was statistically 

significant at a 10%-level of significance. 
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simulation purposes
8
. To study how land use/transport strategies are appraised differently by the 

three different accessibility measures presented in this paper, the following hypothetical situation 

is constructed: A representative traveler faces a choice from the choice set as defined above. 

Time spent in traffic jams equals zero minutes (during both morning and evening commute) for 

the early and late departure times, and it equals 15 minutes (during the morning as well as the 

evening commute) for the regular departure time.  

The focus is on a ‘peak spreading’ strategy that reduces time spent in traffic jams during the 

morning commute at the traveler’s regular departure time, at the cost of increasing time spent in 

traffic jams during the morning commute at earlier and later departure times (both to an equal 

amount– however, we assume that the impact of the peak-spreading strategy on total off-peak 

congestion is smaller than the impact on peak-hour congestion, due to the likely existence of 

unused capacity during off-peak hours). Accessibility benefits of this strategy are computed as a 

function of the reduction in time spent in traffic jams during the morning commute. Formally, 

this implies the following settings, where reduction is varied from 0 to 15 minutes: 

Jam(ea, mo) = Jam(la, mo) = reduction / 3; Jam(reg, mo) = 15 – reduction  

Jam(ea, ev) = Jam(la, ev) = 0; Jam(reg, ev) = 15 

Here, ea stands for ‘early’, reg stands for ‘regular departure time’ la stands for ‘late’, while mo 

stands for ‘morning’ and ev stands for ‘evening’. Note that whithout peak spreading strategy 

(i.e., reduction = 0), the regular departure time is the most popular of the three. More 

specifically, it achieves a market share of 45% when a RUM-based decision model is assumed, 

and a share of 40% when a RRM-based decision model is used – the remaining two alternatives 

each get 50% of the remaining market share. Figure 2 shows results in terms of accessibility 

benefits as a function of the magnitude of the reduction in peak hour congestion; that is, it gives 

the expected utility of the choice set after the peak spreading strategy minus the expected utility 

of the choice set before the peak spreading strategy. Benefits computed by means of the 

                                                             
8
 More specifically, we re-estimated the models without the insignificant variables and used resulting estimates for 

simulation purposes. Differences with the parameter-values presented in Table 1 were very minor and are not 

reported here. Note that for this re-estimated model the RRM-model’s fit (Final-LL of -797.3) was statistically 

superior when compared to the RUM-model’s fit (Final-LL of -798.7) at a 5%-significance-level. 
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conventional Logsum are given by the solid line; those computed by means of the measure 

presented in equation 2 (assuming preference volatility) by the dashed line; those computed by 

means of the measure presented in equation 3 (assuming preference volatility and regret-based 

decision-making) by the dotted line.  
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Figure 2: Accessibility benefits of a peak-spreading strategy
9
 

 

A first thing that catches the eye is that the three measures imply rather substantial differences in 

computed accessibility-benefits. Especially the difference between the Logsum (solid line) on the 

one hand, and the other two measures (dashed and dotted lines) on the other hand, is non-

negligeable as the latter two suggest around 60% higher benefits than the Logsum for reductions 

close to 15 minutes. It goes without saying that these numbers should by no means be treated as 

generic or absolute, since they are based on the specifics of our small-scale case study. As will 

be argued below, also the sign of the difference is specific to the settings of our example. 

                                                             
9
 Note that, since our sub-sample of the data did not contain a cost-related attribute, we are unable to measure 

accessibility-gains in monetary terms. 
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However, the example does show. However, they do signal that the alternatives to the 

conventional Logsum-approach may easily lead to different policy-implications: in the context of 

our example, a particular peak spreading strategy may achieve positive net benefits in the context 

of one accessibility-measure, while achieving negative net benefits in the context of another 

measure (depending on the costs associated with implementing the strategy). 

A second observation is that both the two measures based on preference volatility (the dashed 

and dotted lines) appear to imply higher accessibility-benefits associated with reductions of time 

spent in traffic jams, than does the Logsum-measure which assumes stable preferences (the solid 

line). An explanation for this lies in the fact that reductions in peak hour congestion increase the 

popularity of the peak-hour alternative (‘regular departure time’): it becomes by far the most 

popular alternative for large reductions (claiming a share of around 65%), while in the initial 

situation the peak hour-alternative is only marginally more popular than the two off-peak 

alternatives (claiming a share of 40-45%, depending on wether the RUM-based or RRM-based 

choice model is used). In the initial situation, where all three alternatives are more or less equally 

attractive, the two accessibility measures that assume volatile preferences predict that there is a 

relatively large probability that a chosen alternative (based on either decision-utility or decision-

regret considerations) turns out to differ from the alternative with highest experienced utility. In 

other words, these measures predict that in the initial situation there is a large chance that a 

suboptimal choice is made. When the reduction in peak-hour congestion becomes more and more 

pronounced, the ‘regular departure time’ alternative becomes more and more popular relative to 

the other alternatives, and choosing a suboptimal alternative due to preference volatility becomes 

less and less likely. This move from a high towards a small probability of making a suboptimal 

choice implies additional accessibility gains that are captured by the two measures that assume 

volatile preferences, while being ignored by the conventional Logsum-measure which assumes 

that suboptimal choices are impossible since preferences are stable
10

. 

                                                             
10

This also implies that the accessibility-benefits estimated by a Logsum-measure, of a land use-transport policy 

which aims at increasing the popularity of a relatively unattractive alternative with the aim that the alternative 

becomes equally attractive as its alternatives, will be higher (ceteris paribus) than those estimated by its counterparts 

that assume volatile preferences. 
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A third observation that can be made, is that the accessibility-measure that assumes preference 

volatility and regret-based decision-making (dotted line) results in lower accessibility benefits 

than the accessibility-measure that assumes volatile preferences only (dashed line). The former 

measure (which assumes regret-based evaluation rules for decisions) even implies somewhat 

smaller benefits than the Logsum for small reductions in peak-hour congestion. The reason for 

this is that the RRM-model predicts a smaller probability for the ‘regular departure time’-

alternative than does its RUM-based counterpart
11

. This difference ranges from more than five 

percentage points in the initial situation to around one percentage point when a 15 minute 

reduction in peak-hour congestion is established. Since improving an alternative only leads to 

higher accessibility to the extent that the alternative is in fact likely to be chosen by the traveler, 

the logical result of this difference in popularity of the peak-hour is a difference in accessibility 

benefits in favor of the utility-based measure. 

 

6.  Conclusions 

This paper argues that there is a discrepancy between what Logsum-measures of accessibility 

aim to measure (experienced utility) and what they actually measure (decision-utility). The 

former type of utility refers to the evaluation of a chosen alternative during or after execution, 

while the latter refers to the evaluation of an alternative during or right after the moment a choice 

                                                             
11

The reason for this lies in the fact that the RRM-model assumes that regret is experienced with respect to all 

alternatives that perform better on a particular attribute. The result of this is that when an alternative performs worse 

than all other alternatives on a particular attribute, the RRM-model associates a relatively large penalty with this 

attribute-level inferiority as it adds together the regrets associated with comparing the alternative with each of the 

other alternatives (in terms of the given attribute). This is exactly what happens in our example, especially in the 

initial situation: the ‘regular departure time’-alternative performs worse than both its competitors in terms of the 

attributes ‘time spent in traffic jam’ (morning and evening), and as a result it is heavily penalized by the RRM-

model. Note that its large and positive constant makes that it is still the most popular alternative of the three 

alternatives. As the reduction in peak-hour congestion gets larger, the difference between shares predicted by RRM 

and RUM (and: the difference between the associated accessibility-measures) becomes smaller as the peak-hour 

alternative becomes less inferior on the attribute ‘time spent in traffic jam’ during the morning commute. 
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is made. We argue that accessibility should preferably be conceptualized and operationalized in 

terms of experienced utility, but that this type of utility is difficult to measure directly in a 

consistent manner. Motivated by these observations we show, taking the Logsum as a starting 

point, how its building blocks (parameters estimated from choice patterns) can be used to 

construct closed-form and easy to compute accessibility measures that provide an approximation 

of experienced utility.Based on discrete choice-models estimated on departure time-choice data, 

a small-cale and illustrative case study is presented. Numerical results are intuitive, and suggest 

that the different accessibility measures may imply different land use/transport strategies. 

At least four avenues for further research readily come to mind. First, it appears worthwile to 

compare the three measures on other choice situations. Preferably, also larger scale case-studies 

should be performd, to get an idea of how the three measures compare when evaluating 

accessibility benefits at a more aggregated level (this paper’s case study focused on accessibility 

benefits for one ‘representative’ traveler). Second, whereas in this paper we focused on the 

example of regret-based decision making as an alternative to utility-based choices, there are of 

course many other decision-rules that may be studied. Third, whereas we assumed that the entire 

data are generated by one decision-rule or another (in our paper: utility-based or regret-based), it 

makes sense to extend our approach towards the less restrictive assumption that while some 

choices may be generated by one decision-rule, others may be the result of a different rule. For 

example, recent work (Hess et al., 2011) has highlighted – using latent class-analyses – that a 

share of up to 40% regret-minimizers may exist in a sample where utility-based models provide 

the better overall fit with the data. Fourth, as suggested earlier it makes sense to hypothesize that 

the discrepancy between decision utility and experienced utility may decrease over time as a 

result of learning. It would be worth while to study how this behaviorally intuitive notion can be 

captured in our modeling approach, and to see if it indeed holds in real life. One way of 

modeling this learning effect might be to allow the variance of the random error to be a 

(decreasing) function of the level of experience. In principle, when enough observed 

heterogeneity exists in the data in terms of experience levels, its impact on the discrepancy 

between decision and experienced utility can be captured. 

In terms of policy-implications, the developed alternatives for the conventional Logsum-

approach may be used as so-called second-opinion models. Given that these alternatives are 
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based on behavioral premises which are fairly different from those underlying Logsum-based 

analyses, the finding that a particular land use-transport policy results in an attractive benefit-

cost-ratio under all alternatives may be considered a sign of its robustness.  

To conclude: the aim of this paper was certainly not to argue that one of the developed 

alternative accessibility-measures is to be prefered over the Logsum-measure, which has shown 

its worth in several applications and theoretical exercices. Instead, our aim was to highlight 

behavioral assumptions underlying the Logsum-approach to accessibility measurement which are 

usually discussed only very implicitly (if at all) in academic literature, while not being 

undisputed. We argue that at least these assumptions (of stable preferences and utility-

maximization based decision-making) should be treated more explicitly, and that relaxing them 

may be an effort worth while undertaking. 
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