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Abstract 

 

It is a common finding in empirical discrete choice studies that the estimated mean relative values 

of the coefficients (i.e. WTP’s) from multinomial logit (MNL) estimations are different from 

those from mixed logit estimations, where the mixed logit has the better statistical fit. However, it 

is less clear under exactly which circumstances such differences arise, whether they are 

important, and if they can be seen as biases in the WTP estimates from MNL. A well known form 

of bias is the omitted variable bias. We discuss a number of cases were such an omitted variable 

problem can occur and argue that this endogeneity problem might be more common in discrete 

choice studies than is commonly thought. We use datasets created by simulation to test, in a 

controlled environment, the effects of the different possible sources of bias on the accuracy of 

WTP’s estimated by MNL. We reproduce the known result from earlier Monte Carlo studies, that 

random heterogeneity in the marginal utilities in itself does not cause biased MNL estimates. 

However, we find that if two heterogeneous marginal utilities are correlated, that than the WTP’s 

from MNL can be biased. If the correlation between the marginal utilities is negative, than the 

bias in the MNL estimate is negative, whereas if the correlation is positive the bias is positive.  

 

Keywords: Discrete Choice, Biases in WTP Estimates from Multinomial Logit, Correlated 

Heterogeneous Marginal Utilities, Omitted Variable Bias 
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1. Introduction 

Multinomial Logit (MNL) is often used in empirical discrete choice studies. However, as for 

instance Bhat (1998a) notes, if there is heterogeneity in the marginal utilities and/or in the 

alternative specific constants, than ignoring this, by estimating a MNL, could lead to biased 

parameter estimates and choice probabilities. With MNL it is only possible to control for 

observed heterogeneity. For instance, that the marginal utility of a price attribute can depends on 

income. To control for unobserved heterogeneity, a mixed logit or a probit can be used. However, 

ignoring heterogeneity by using MNL does not necessarily cause biased estimates. For instance, 

Train (1998) notes that there is probably no general answer whether or not MNL gives correct 

estimates when heterogeneity is present. Hence, it remains unclear under which circumstances 

MNL gives biased mean estimates of the WTP’s (i.e. the ratio’s of marginal utilities). This paper 

studies some circumstances under which biases in WTP estimates may occur.  

The problem of omitted variables occurs when a variable that influences the choices of 

individuals is unobserved by the analyst and is correlated with one or a number of explanatory 

variables. In is hence an endogenous explanatory variable problem. The problem of endogenous 

variables has long since been recognized. However, controlling for endogeneity is more difficult 

in discrete choice models, than in linear (regression) models (Louviere et al., 2005).  

We also study what happens if marginal utilities are heterogeneous, but one ignores this by 

estimating an MNL model. We analyse three cases of heterogeneity. The first is symmetric 

random heterogeneity. The second is asymmetric heterogeneity, where the mean, mode and 

median of the distributions of the marginal utilities are not equal. Thirdly we study the case when 

two heterogeneous marginal utilities are correlated.  

 

This paper studies some circumstances under which heterogeneous marginal utilities might 

cause biased WTP estimates from MNL. It also studies the effect of an omitted variable bias, and 

discusses several situations in which this bias might occur which we think could be 

circumstances that can occur in real world empirical studies.  

 

In this paper we only look at the effects of potential problems of MNL on the Willingness-To-

Pay (WTP) for an attribute. It would also be possible to study the coefficients themselves, or the 

resulting elasticities. A problem with using elasticities in this setting is that there is the question 

of how to aggregate them. Furthermore, even if the estimated coefficients are unbiased, it can still 

be the case that the choice probabilities, on which MNL elasticities depend, are biased. Hence, 

using elasticities in complicates the task of comparing the design levels with estimates. A 

problem with studying coefficients is that the coefficients depend on arbitrary scaling, whereas 

WTP’s do not. Consequently, we only compare the WTP’s. 

We use datasets created by Monte Carlo simulation. Hereby, we can create datasets in 

controlled environments, enabling us to test the effects of certain issues (such as heterogeneous 

marginal utilities) in a clean laboratory-type of setting. Conversely, in real world empirical 

datasets there are a large number of issues at play, making it difficult to analyse separate issues.  

Section 2 first discusses some of the literature. Then Section 3 studies the effect of (non-

symmetric) heterogeneity in the marginal utilities and discusses the basic setup of the Monte 

Carlo simulation, which is also used in the following sections. Section 4 discusses omitted 



 

 

2 

variable biases. Section 5 studies what happens when two heterogeneous marginal utilities of two 

attributes are correlated, and finally Section 6 concludes.  

 

2. Literature discussion 

This section discusses some of the literature. First, a number of studies that use both MNL and 

mixed logit are discussed. Next, we discus a number of known sources of bias.  

Bhat (1998a) finds that the WTP’s from mixed logit are on average slightly larger than with 

MNL for his dataset. He also notes that the absolute value of the elasticity of the choice 

probability to “costs” is larger with mixed logit than with MNL. Similarly, Bhat (2000) finds that 

MNL underestimates the WTP’s for out-of- and in-vehicle travel time. Bhat (1998b) notes that 

the WTP’s for out-of- and in-vehicle travel time are somewhat smaller with his MNL than with 

his mixed logit. 

Train (1998) finds for his data that the WTP’s for the attributes are slightly to substantially 

larger with mixed logit than with MNL. He also finds that the WTP’s from his mixed logit with 

correlated marginal utilities are smaller than those found by MNL and the mixed logit without 

free correlation. He also concludes that there probably is no general conclusion whether MNL 

gives good estimates for the WTP’s for a given dataset, that the performance of MNL will be 

different for each dataset. Rizzi and Ortúzar (2006) find that the Values of Risk Reduction (i.e. 

the WTP’s for Risk) in the three surveys they analyse are somewhat lower with MNL. However, 

the average WTP’s from their mixed logits are within the 95% confidence intervals of the WTP’s 

of the respective MNL’s. Hensher, Greene and Rose (2008) find for their combined Stated 

Preference (SP) and Revealed Preference (RP) dataset that the mean price elasticities with nested 

logit are for some alternatives higher and for others lower than with their mixed logit.  

Van den Berg (2008) finds for his dataset that MNL underestimates the WTP for travel time 

and over-estimates the WTP’s of the usage restrictions on the train trip tickets. Interesting is that 

he finds that not controlling for the travel time of the train trip on which the SP experiment was 

based causes the largest bias in the estimations. This omitted variable bias is because this 

background variable positively influences the utility of choosing a train ticket alternative and is 

correlated with the attributes ticket price and travel time. 

The empirical papers often find that MNL estimations give different estimates of the WTP’s, 

than mixed logits. However, there is no clear pattern in whether MNL over- or underestimates 

WTP’s. One study finds an overestimation, a second finds an underestimation and a third finds 

no real difference. These empirical results are however in contradiction with the results of the 

theoretical analysis of Horowitz (1980) using simulated datasets. He analysed the performance of 

MNL when there is random heterogeneity in the marginal utilities. He found that the ratio of the 

two coefficients he estimates on his simulated datasets (i.e. the WTP) is for all amounts of 

heterogeneity in the marginal utilities almost identical to the design value. He concluded that the 

ratio of the coefficients is unbiased when one does not control for response heterogeneity. 

However, he did find that the MNL choice probabilities will be biased. The question is; why 

would unobserved heterogeneity cause biased WTP estimates from MNL? 

A common cause of bias is correlation between unobserved elements of utility and the 

explanatory variables (i.e. endogenous variables) (Louviere et al., 2005). This is issue is 

discussed in Section 3. If the data has a panel structure, this can also lead to a bias. Examples of 

panel discrete choice datasets are RP data with multiple observations per individual over time, or 



 

 

3 

SP data if the respondents face multiple choice situations. The MNL choice probability formula 

is based on the assumption that the unobserved elements the utility are Independently and 

Identically Distributed (IID). Train (2003) shows that with panel data the IID assumption of 

MNL is violated if there are fixed effects in the unobserved elements that are invariant over time 

for an individual. This will probably make the standard errors of the estimated coefficients 

incorrect. However, this should have no effect on the estimated coefficients themselves.  

Nevertheless, as Carro (2006) discusses, if the αiq is correlated with an explanatory variable 

and if previous choices affect current choices, then the estimated coefficients will be biased. 

Train (2003) notes that if the unobserved elements are correlated over time, then including 

dynamics in the observed utility (such as a lagged dependent variable) causes the estimation to be 

inconsistent, if it does not control for the dynamics in the unobserved elements.  

Heckman (1981) comes to the same conclusion using Monte Carlo experiments. He first 

studies the case of strictly endogenous variables and fixed individual effects. He concludes that in 

this case a probit estimation works well. However, if a lagged dependent variable also affects the 

choices, then the probit estimation performed badly. Arellano (2003) notes that this is not 

surprising, as the same issue arises with linear auto regressive models. In the case of dynamics in 

the unobserved and in the observed elements of utility, a method is needed that can control for 

this, such as panel mixed logit or panel probit.  

This bias is hence caused by the correlation between the (non-simulated) unobserved elements 

and the explanatory variable, caused by the dynamic structure of the model. However, it is still 

not clear why unobserved heterogeneity in itself causes a bias. In this paper we research three 

forms of possible causes of bias. The first is non-symmetric random heterogeneity in the 

marginal utilities. The second is an endogenous variable caused by an omitted variable. Thirdly, 

we study the effect of correlation between two heterogeneous marginal utilities.  

 

3. Non-symmetric marginal utilities  
This section tests whether (non-symmetric) heterogeneity in the marginal utilities could cause 

biased mean estimates. The idea is that the non-symmetricness in the heterogeneity might not 

middle out to the mean of the distribution. For example, because of the non-linearness of the logit 

probability function.  

We investigate this through dataset simulations in which we use several different design forms 

of the random elements of two marginal utilities. Hereby we test if there are differences in the 

WTP’s from MNL as the skewedness of the random elements of the marginal utilities increases. 

We create 2000 datasets per version of the marginal utilities and then perform MNL estimates on 

these simulated datasets. The following paragraphs first describes the setup of the created 

datasets. Thereafter, the results of the simulations of this section are discussed. 

We only use triangular distributions for the random elements. Symmetric triangular 

distributions for random elements were first applied in a discrete choice study by Train (2001). 

The (symmetric) triangular distribution is increasingly being used in empirical studies using 

mixed logit (Hensher, Greene and Rose, 2008). Advantages of the triangular distribution are that 

it is a bounded distribution, thereby preventing excessively large or small marginal utilities, and 

that it is possible to constrain a marginal utility so that it can never change sign. This last 

property is useful for attributes for which a positive or negative utility is implausible.  

In a more general form, the triangular distribution can also allow for non-symmetric 

distributions. An example of such a distribution is shown in Figure 1.  In this distribution, a is the 
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minimum, b the maximum and c the mode. Because, it is a non-symmetric distribution the mode 

is not the same as the mean. The mean of the distribution is given by (a+b+c)/3. If (c-a) < (b-c) 

then the mean is larger than the mode; if (c-a) > (b-c) it is smaller (Weisstein, 2008).  

 

Figure 1: The triangular distribution 

 
 

 

 

In mixed logit models, the symmetric triangular distribution (i.e. (c-a)=(b-c)) is often used.  In 

this case the c-a is called the spread, as it gives the spread of the distribution. To constrain a 

marginal utility to be positive, the spread is constrained not exceed the mean. A downside of this 

specification is that it does not allow (the absolute of) the marginal to be larger than twice the 

absolute of the mean. Thereby, it limits the amount of heterogeneity that can be estimated. 

Furthermore, the distribution of the random element is constrained to be symmetric. 

The symmetric triangular distributed marginal utility of attribute k for individual q is given by 

equation (1). 

 

*kq k k kqc Spread Tβ = +             (1) 

 

The Tkq is a random variable with a symmetric triangle distribution, with -1≤Tkq≤1 and a zero 

mean. It is generated from a standard uniform random variable (Ukq) by 

 

2   1       if 0.5kq kq kqT U U= − ≤         (a) 

2(1 )       if 0.5kq kq kqT U U= − > .        (a) 

 

Defining dk = ck - ak (i.e. the (negative) spread to the left) and ek= bk - ck (i.e. the spread to the 

right in Figure 1). Than for the non-symmetric version the marginal utilities are given by (2). 

 

*( )*( )             /  ( )kq k kq k k k k kq k k kc U e d d d if U d e dβ = + + − ≤ −  

(1 )*( )*         /  ( )kq k k kq k k k kq k k kc e U e d e if U d e dβ = + − − + > −     (2) 

 

We now introduce the general layout of the datasets we create. This layout is also used in the 

later sections. We only use triangular distributions for the marginal utilities. We simulate a choice 

situation in which there are three alternatives. The utility of alternative i for individual q depends 

on a number of explanatory variables (the vector Xiq), the individual parameter vector (βq) which 

is the same for all alternatives and the IID unobserved element εiq. The utility functions for the 

three alternatives is based on  =  iq i iq iqU ε+T
β x , and are given by formula (3a-c). 

Spread to  

the left  

Spread to the right 
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(3) 

U1q=β1q * X11q + β2q * X21q + ε1q        (3a) 

U2q= β1q * X12q + β2q * X22q + β3q * X32q+ ε2q + ASC2     (3b)  

U3q= ε3q + ASC3          (3c) 

 

The first number in subscript behind the X variables (k=1,2,3), indicates which X variable is 

used. The second number indicates the alternative (i=1,2,3). Finally, the q (q= 1,2,..,N) indicates 

for which individual the utility is calculated. For easy interpretation we view the X1iq as the price 

of alternative i for individual q. The (individual) parameters are also called the marginal utilities, 

because the derivative of the utility to variable Xkiq is βkq. The εiq‘s are randomly generated to be 

Independently and Identically Distributed, with an Extreme Type I distribution form. Discrete 

choice models use the assumption of utility maximization. Hence, an individual in the simulated 

datasets chooses the alternative which gives the highest utility. The utility of third alternative is 

not influenced by any attribute, and can be seen as an “opting out” alternative. 

The X11q and X12q (i.e. price) variables are created from the variable Z1q and the X21q and X22 

variables from the variable Z2q. The X1iq (i= 1 or 2) variables are created from Z1q by a randomly 

generated difference variable, which can take the values of 10%, 20%, 30% and 40%. Hence, Z1q 

times the difference variable gives the difference between the two X1iq variables. This difference 

is allocated to an increase relative to Z1q for X11q and a decrease for X12q. This allocation is 

determined by the standard uniform random variable r1q. For X21q and X22q these variable are 

difference relative to Z2 (i.e. diff2q) and r2q. Here diff2q can take four values, namely 0%, -10%,    

-20% and -30%.  Hence, the X21q for alternative one is always lower or equal to the X22q for 

alternative two. The variables are determined by the formulas (4a-d). The design levels and forms 

for Z1q and Z2q and X32q are shown in Table 1. Note that X32q has a uniform distribution, which 

starts at mean – spread/2 = 5 and ends at mean + spread/2 = 25.  

 

X11q=Z1q + Z1q * diff1q * r1q,   (4)       (4a) 

X12q=Z1q – Z1q * diff1q *(1- r1q),        (4b) 

X21q=Z2q + Z2q * diff2q * r2q,
          

(4c) 

X22q=Z2 q– Z2q * diff2q *(1- r2q).        (4d) 

 

Table 1: The designs of the variables of the simulated dataset 

 

 

 

 

 

 

The marginal utilities and Alternative Specific Constants (ASC’s) are determined by the 

design values in Table 2. The spreads to the left are determined by the design variable Min_k and 

to the right by Max_k. The spread to the left is given by Min_k * mode_k and to the right by 

Max_k * mode_k. The mode of the distribution is calculated so that given the spreads (as 

determined by Min_k and Max_k), the mean of the marginal utility is equal to the design mean. 

Hence, no matter what, the expected value of the marginal utilities is the same for each design 

version of the datasets, which helps interpreting the results.  

 Mean Standard Deviation Spread Distribution shape 

Z1q 10 5 - Lognormal 

Z2q 70 40 - Lognormal 

X32q 15 - 20 Uniform 
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Table 2: The designs of the marginal utilities and ASC’s 
 Mean Spread to the left Spread to the right Distribution shape 

β1q -0.15 Varies by the design Varies by the design Triangular 

β2q -0.025 Varies by the design Varies by the design Triangular 

β3 -0.02 0 0 Fixed 

ASC2 -0.4 0 0 Fixed 

ASC2 -4.5 0 0 Fixed 

  
Table 3 shows that we use 18 different combinations of the Min_k and Max_k design 

variables. Per version we generate 2000 different datasets, where each dataset has new values for 

the explanatory variables, marginal utilities and unobserved elements. For each dataset we create 

500 individuals, who all face one choice situation. We do on each dataset a MNL estimation in 

Gauss 6.0 using the maxlik module. The starting values for the coefficients and ASC’s were 

determined randomly within certain bounds, where the bound was different for each coefficient 

and ASC.  

We calculate for each dataset the WTP’s for X2i and X32 (i.e. β2/β1 and β3/β1), and then 

calculate the averages per version, and these are reported in Table 3. We also give the design 

levels of the WTP’s and the average relative sizes of the two. This last figure is defined as mean 

of the estimated WTP divided by the design WTP.  

 

The design levels of the WTP’s are calculated by dividing the dataset mean of βiq by the mean 

β1q. Given the assumption that the true model is a mixed logit, the coefficients of the MNL 

estimation should be equal to the means of the randomly heterogeneous marginal utilities. Hence, 

a WTP from MNL should be equal to the mean of the marginal of some attribute divided by the 

mean marginal utility of price. This also means that the WTP from an MNL should not be equal 

to the mean WTP from a mixed logit. The mean WTP of a mixed logit is given by the mean of 

the marginal utility of some attribute divided by the marginal utility of price. The WTP from an 

MNL estimated is given by the coefficient of some attribute divided by the coefficient of price. 

Naturally it is so that _ _( / ) ( ) / ( )kq price q kq price qE E Eβ β β β≠ . This could also explain part of the 

differences found by the empirical literature between the WTP’s of MNL and mixed logit. The 

absolute of the WTP from a MNL should be smaller than the absolute of the mean WTP from a 

mixed logit estimated in utility space, if the mean marginal utilities in the mixed logit estimate 

are equal to the coefficients in the MNL.  

The relative sizes of the estimated WTP’s to their design levels are also depicted in Figure 2. 

This figure also depicts the 90% interval of all the estimates per version of the marginal utilities. 

Hence, it gives the area within which 90% of the WTP estimates on the simulated datasets lie. 

This range gives an indication of the accuracy of the simulation and helps in determining whether 

a mean estimated WTP is really different from its design value.  

The first part of Table 3 shows that β2q is given a symmetric triangular distribution. The 

marginal utility of X1q (i.e. β1q) is given an asymmetric distribution. The spread to the right is 

equal to 0.999*mode (in all but the first case) and the spread to the left varies from 0 to 3. Both 

marginal utilities remains negative, because the maximum is (1-0.999) * modek.  
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Table 3: Results estimations on the datasets with non-symmetric random marginal utilities. 

Design variables                               

Min_1 0 0.1 0.2 0.3 0.5 0.6 0.8 0.9 0.999 1 1.1 1.2 1.4 1.5 1.6 2 2.5 3 

Min_2 0 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

Max_1 0 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

Max_2 0 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

WTP variable X2iq  (β2/ β1)                        

Estimated 0.170 0.169 0.169 0.170 0.170 0.170 0.170 0.175 0.176 0.172 0.176 0.176 0.178 0.175 0.176 0.175 0.175 0.177 

Design value 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 

Relative value 1.018 1.012 1.015 1.017 1.020 1.022 1.023 1.049 1.055 1.032 1.056 1.056 1.067 1.048 1.053 1.050 1.050 1.061 

WTP variable X32q (β3/ β1)                      

Estimated 0.135 0.137 0.142 0.132 0.136 0.134 0.137 0.137 0.140 0.135 0.141 0.142 0.139 0.139 0.134 0.140 0.141 0.141 

Design value 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 

Relative value 1.013 1.027 1.065 0.992 1.023 1.008 1.030 1.028 1.047 1.010 1.061 1.064 1.045 1.045 1.006 1.050 1.058 1.060 

 

Figure 2: Relative values estimated WTP’s in Table 3 to their design values over the values of Min_1 
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The table and figure make clear that the skewedness of the distribution of the heterogeneity 

and the heterogeneity itself have no effect on the mean of the estimated WTP’s of the 2000 

datasets per version (i.e. per column in Table 3).  

For relatively strong asymmetry, the estimated WTP for X2 (β3/β1) is more or less equal to the 

design value, and for small amounts of asymmetry this is also the case. For the WTP for X32 

(β3/β1) a similar conclusion holds, with no clear pattern of bias visible due to the skewedness of 

the distribution. The mean estimated WTP’s vary a bit over the table; however there is no clear 

pattern of effect of (non-symmetric) heterogeneity. Note that the random heterogeneity in the 

marginal utilities does cause the estimates to have a larger spread and makes the standard errors 

of the estimates larger. 

The conclusion from this exercise is that whether or not the heterogeneity in a marginal utility 

is symmetric, it need not affect the estimated mean WTP’s of an MNL estimation. However, the 

shape of the random elements of the marginal utilities might affect the shape of the unobserved 

elements in MNL estimations and thereby cause a violation of the assumption that the 

unobserved elements all have the same EV1 distribution. In this section we have reproduced the 

result of Horowitz (1980) that heterogeneity in itself need not cause estimations that ignore the 

heterogeneity (such as MNL) to give biased WTP estimates.  

 

4. Omitted variables 
The previous section found no biases in the WTP’s from MNL estimations due to unobserved 

heterogeneity (both symmetric and not) in marginal utilities. This section studies a second 

possible source of bias, omitted variable biases. The problem occurs when a variable that 

influences the choices of individuals is unobserved and is correlated with one or a number of 

explanatory variables. For linear models the problem can be solved by using an Instrumental 

Variable (IV) regression. However, for non-linear models, such as the logit and probit models 

used in discrete choice, the regular IV method can not be used. Then alternative methods such as 

a “control function” approach or a “fixed effects” method (also referred to as the BLP method 

(Berry (1994) and Berry, Levinsohn and Pakes (1995))) are needed (Louviere et al., 2005).  

 

Both methods use two-stage estimations to control for the endogeneity. The “fixed effect” 

method was developed to empirically study (discrete) demand for and supply of differentiated 

products. Examples of such a structure are automobiles (Berry, Levinsohn & Pakes, 1995), 

margarine (Petrin & Train, 2004), TV cable / satellite provider (Goolsbee & Petrin, 2004), yogurt 

and ketchup (Villas-Boas & Winer, 1999). In these cases some explanatory variables are 

correlated with the unobserved elements. Usually, the studied issue is that the price is correlated 

with the unobserved quality. Higher quality cars (or ketchups or margarines) are usually more 

expensive to produce.  

The choice of a new auto is a good example to explain the “fixed effect” method by. There are 

a J number of different cars and N individual decision makers. For each different car there is one 

price and all the other attributes are also the same for all individuals. If one than includes an 

Alternative Specific Constant for each of the J alternatives (car types) in a logit or probit, it 

becomes impossible to include the product attributes, as their effect is captured by the constants. 

Thereafter, in the second stage the Alternative Specific Constants are regressed on the attributes, 

to find the effect of the attributes. 
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The second method is the “control function” approach. This method was developed by Vilas-

Boas and Winer (1999) and Blundell and Powell (2004). In the first stage the endogenous 

explanatory variable is regressed on one or a number of instruments that are uncorrelated with the 

unobserved element of the second discrete choice stage. Hence, the instruments have the same 

function as in an IV estimation. Then the errors of this first stage (or a function of them) are 

added to the second stage, as an approximation of the unobserved element that is correlated with 

the explanatory variable. The endogenous variable is added without alteration in the second stage 

(Louviere et al., 2005). If the coefficient of the estimated error from the first stage has a 

significant effect in the second stage, then there is significant endogeneity (Petrin and Train, 

2004). Note that if the error has no effect in the estimation, this does not necessarily mean that 

there is no endogeneity. It could for instance be the case that the instruments are not strong 

enough or are correlated with the unobserved element of the second stage.  

There is currently a large interest in endogeneity in discrete choice models and it is an active 

field, see Louviere et al. (2005) for a discussion of the literature. This interest seems logical as 

endogeneity can cause large biases and can be difficult to control for. The point of this section is 

not to show that endogeneity causes bias. The goal is to emphasize how common problems with 

omitted variables can be.  

The methods used to control for endogeneity seem to be more difficult to use than the usual IV 

method used for linear models. Furthermore, there is also the risk that if the methods are not 

correctly applied (e.g. non-exogenous instrument) that the estimation are still biased, whereas the 

researcher assumes that it is unbiased. Hence, the best solution seems to be to find data on the 

omitted variables. Consequently, it seems advisable to put extra effort (and recourses) in 

acquiring information on (or proxies for) variables that could cause an omitted variable bias. This 

can prevent the need to use a more difficult and possibly incorrectly applied two stage estimation. 

 

To emphasize how common omitted variable biases can be, we now discuss a number of 

examples. Our first example of an omitted variable bias comes from Van den Berg (2008), who 

studies the choice of train tickets using an SP experiment. He finds that not controlling for the 

background variable travel time of the trip on which the SP experiment was based causes positive 

biases in the coefficients for travel time and price. Thereby a positive bias in the WTP for travel 

time and a negative bias in the other WTP’s result. The probability of choosing a ticket 

alternative increases with this background variable, as for longer distances there is less 

competition from other modes. The attribute “travel time” was based on the background variable 

travel time of the trip on which the experiment was based and “ticket price” is a function of travel 

distance, which is correlated with travel time. Hence, if one does not control for the background 

variable, the estimated coefficients for “travel time“ and “ticket price” also partly measures the 

effect of the background variable. This type of distance effect on the choices and the correlation 

of this background variable with the attributes can also occur in other situations.  

That the strength of competition between modes differs over the length of the trip can occur in 

many situations. For instance, (in the Netherlands) for short distance the bus often faces little 

competition from the train, but a lot from biking. Conversely, for middle distance the train is a 

more serious competitor and the competition from biking is less. Furthermore, it also seems 

likely that the price and travel time are correlated with trip distance in this and other situations. 

The distance effect causes an endogeneity problem, just as the endogeneity of price via “quality” 

in the discussed studies caused an endogeneity problem.  
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A second example is income. If richer people dislike travelling by public transport and more 

often buy a first class ticket if they do travel by public transport. Than in this case the preference 

for travelling by public transport and price are both correlated with income. Hence, if income is 

unobserved than under the discussed assumptions there can be omitted variable bias.  

A third example could be the choice of the road to travel by. Suppose that an individual can 

either choose to travel by the main road or by a scenic secondary road. Further suppose that the 

main road has a lower risk of injury and death due to an accident. The final assumption is that 

there is unobserved heterogeneity in the valuation (i.e. the marginal utility) of scenery. If these 

assumptions hold than the unobserved element and the attribute risk of the road are correlated, 

thereby it can cause an omitted variable bias.    

A fourth example is the earlier mentioned relation between the price of an attribute and the 

(unobserved) quality. This endogenous relationship can be very common, as it seems a very 

natural situation that higher quality products are more desirable and more expensive to make.  

Furthermore, attribute quality is very difficult to measure and hence often unobserved. 

Consequently, studies that control for endogeneity most commonly study this relationship. 

A last example could be the choice of utility company. In that, companies with better a 

service, a better helpdesk or who are more flexible in the credit policies have higher costs and 

hence higher prices. Furthermore, the valuation of these service characteristics might be 

heterogeneous over the population. Hence, the observed price might be correlated with the 

unobserved service characteristics of the utility company.  

The above examples show that omitted variable biases can have large effects. Furthermore, 

there can be many causes of such biases. This is why we emphasize the importance of controlling 

for background variables. However, it can be very difficult to get data on all possible omitted 

variables. A question on income for example can be difficult to ask in a questionnaire and when 

asked there is the danger of inaccurate answers. For instance, because people do not want to 

admit that they have a high or low income. It can also be difficult to find an objective and 

accurate measure for quality. Furthermore, there are also cases where it is just not possible to 

directly measure an variable.  

The effect of omitted variables is well known. For instance, Wooldridge (2003) discusses the 

effect of an omitted variable in the case of OLS regressions. Suppose that the true model is 

 

Y= β0 + β1 * x1 + β2 * x2 + v.     

 

If than x2 is omitted in a OLS regression, the estimated coefficient of x1 is given by 

 

1 1 1 2 2 1 1 1 2 2 2plim  cov( , )* / var( ) corr( , )* * var( ).x x x x x xβ β β β β= + = +%   

 

Hence, for a positive covariance between the unobserved element (the omitted variable) and 

the explanatory variable there is a positive bias in the coefficient, and for negative covariance a 

negative bias.  

 

Now we present our Monte Carlo study on the effects of two omitted variables on MNL 

estimations. The datasets have the same basic setup as before. The variables have the same means 

and standard deviations. The design marginal utilities have the same means, although they are 
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now all fixed and non-random. Per version of the strength of the relation between the omitted 

variables and the explanatory variables we created 1000 datasets.  

The setup of the utility functions is the same as before. Only now the utility of the third 

alternative is influenced by the new variables X43q and X53q, and determined by equation (3c’). 

The X43q is log-normally distributed, with a mean of 80 and a standard deviation of 50. The X53q 

is triangularly distributed with a mean of zero and a spread of 15. Their fixed betas (β4 and β5) are 

equal to -0.05 and -0.1. Finally, the design level of the ASC_3 was -2.5 instead of -4.5. The X43q 

variable is correlated with Z1q (which determines X1iq) and Z2q (which determines X2iq). The 

strength of these relationships are determined by the design scalars R1 and R2. The variable Z2q is 

also correlated with X53q, this relationship is determined by the design scalar R3. The Z1q and Z2 

variables are randomly generated by formulas (5) and (6). 

      

  U3q= ε3q + ASC3q + β4 * X43q + β5 * X53q       (3c’) 

Z1q=exp( mode1 + sd1 * N1q ) + R1* (X43q – 80)      (5)  

Z2q=exp( mode2 + sd2 * N2q ) + R2* (X43q – 80) + R3* X53q      (6)  

 

The modei and sdi are set so that the design values for the mean and standard deviation hold 

when R1, R2 and R3 are zero. The Niq in (5) and (6) is a random variable with a standard normal 

distribution.  The X1iq and X2iq are again created from the Z1q and Z2q variables by equations (4a-

d). In Table 4, the resulting averages of the estimated WTP’s for each version are tabulated, when 

we do not control for X43q and X53q in a MNL estimation. Figure 3 shows for Table 4 the relative 

values of the estimated WTP’s of X2iq to their design levels. Figure 4 does this for X32q. In the 

figures the solid lines with markers are the resulting relative values. The dashed lines give the 

90% intervals of the relative values, thus the area between which the 90% the estimates lie. This 

area gives an impression on how certain we can be that the estimated results are different than the 

design WTP’s. The first part of the tables gives the design values of the relation strength, the 

scalars  R1, R2, and R3. The starting values for the coefficients and ASC’s in the estimations were 

determined randomly within certain bounds.  

Table 4 and Figure 3 show that as the relation between Z2q and the omitted variables (i.e. R2 

and R3) becomes stronger, the WTP of X2iq becomes smaller. Even for relatively weak relations 

between Z2q and the omitted variables (e.g. R2 = 0.08 and R3= 0.05) the mean of the estimated 

WTP’s for X2iq becomes negative. Furthermore, for somewhat stronger relations between X2iq and 

the omitted variables (R2 ≥ 0.25 and R3 ≥ 0.15) the 90% interval of the estimates is also below 

zero, indicating that it is rather certain that the estimated WTP’s is negative. In these cases the 

omitted variable bias is larger than the design size of the coefficient of the second attribute.  

It is interesting that a negative WTP for the attribute travel time is exactly what Van den Berg 

(2008) found when he did not control for the effect of the background variable travel time of the 

trip the experiment was based on. Hence, the strength of the endogenous (omitted variable) 

relation we simulate can certainly occur in applications. 

When the X43q variable is not added to the estimation, the WTP for the X32q variable increases 

with the strength of the relationship between Z1q and X43q (as given by R1), this is causes an 

positive omitted variable bias in the coefficient of X1iq. However, the 90% of the estimations 

interval is rather large. Hence, we can not be certain that this WTP is larger than it’s design value. 

This result is primarily caused by the large range in the estimates of the coefficient of X32q. 
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Table 4: MNL estimation with no control X43q and X53q 

 

Figure 3: Relative values estimated WTP’s for X2i in Table 4 to their design values  
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Figure 4: Relative values estimated WTP’s for X32 in Table 4 to their design values  
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This section showed that omitted variables can cause very large biases in the WTP estimates 

from MNL. We argue that endogeneity problem from omitted variables can be quite common in 

discrete choice studies.  

 

Design variables (strength relation between Ziq and Xjiq )    

Between Z1 and X43  (R1) 0.00 0.01 0.02 0.03 0.04 0.06 0.07 0.08 0.09 0.10 

Between Z2 and X43  (R2) 0.00 0.08 0.17 0.25 0.33 0.42 0.50 0.58 0.66 0.75 

Between Z2 and X5 3 (R3) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

WTP  variable X2iq  (β2/ β1)       

Estimated 0.170 -0.033 -0.127 -0.214 -0.349 -0.250 -0.266 -0.229 -0.196 -0.143 

Design value 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 

Relative value 1.018 -0.199 -0.762 -1.281 -2.096 -1.499 -1.598 -1.377 -1.176 -0.856 

WTP variable  X32q (β3/ β1)         

Estimated 0.132 0.202 0.253 0.210 0.379 0.278 0.292 0.356 0.276 0.249 

Design value 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 

Relative value 0.992 1.518 1.898 1.578 2.846 2.086 2.190 2.673 2.069 1.867 
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5. Correlation between two heterogeneous marginal utilities  
The previous section showed the large biases that omitted variables can cause, and that the 

problem of omitted variables can be quite common. This section studies the effect of correlated 

heterogeneous marginal utilities, that the unobserved heterogeneity in the marginal utilities of 

attributes is correlated.  

For instance, consider the value of statistical life (or for risk reduction). Suppose that for richer 

people the marginal utility of money is lower, because of a decreasing marginal utility of income. 

Furthermore, suppose that the marginal disutility of a risk of an accident is increasing with 

income, because richer people perceive that they have more to lose. Then, of course, these two 

marginal utilities are correlated.  

Similarly, the marginal utility of travel time could be correlated with the marginal utility of 

price. In the study of purchase of appliances (see Revelt and Train (1998) for a study on 

refrigerator purchase) the marginal utility of the monetary saving due to the efficiency of the 

appliance might be correlated with the marginal utility of the efficiency level of the appliance, or 

with the marginal utility of the (possible) rebate given when purchasing a more efficient 

appliance. This rebate is presumably given to promote the purchase of high efficiency appliances.  

Train (2007) studies the choice of electricity supplier and finds for example significant 

covariance between the marginal utility of whether the rates are differentiated over the day and 

the marginal utilities of price, whether the electricity supplier is a known company and if the 

electricity price differs over the year.   

 

This section shows that correlated marginal utilities can lead to biased mean WTP’s in MNL 

estimations. Train (1998) found that the WTP’s from the mixed logit with correlated marginal 

utilities were lower than the WTP’s from the regular mixed logit and MNL. Hence, not 

controlling for this type of correlation can have an effect. Random coefficient models, such as 

mixed logit and probit, can allow for full covariance between all coefficients (i.e. correlation 

between the random elements of the marginal utilities).  

However, this full generality is rarely used, due to numerical difficulties in maximizing the 

simulated log-likelihood for such a general model, with the large amount of parameters that are 

needed. In most cases no covariance between the random marginal utilities is assumed, and in 

some studies “partly free covariance” is used (Train, 2007). A possible solution to this problem  

could be using different algorithms that do not directly maximize the log-likelihood to find the 

optimal values of the coefficients. Examples of these are the hierarchical Bayes method as 

supported by chapter 12 of Train (2003) or the EM algorithm of Train (2007; 2008). 

Now we consider using a regular MNL when there is unobserved heterogeneity in the 

marginal utilities and there is correlation between the marginal utilities. For this we use the same 

basic set up as in Section 3 and the utility functions of (3a-c). The random elements of the 

parameters are again determined by Table 1. The means of the marginal utilities are also the same 

as in Section 3. However, now we only use symmetric distributions for the marginal utilities, 

with the design spreads equal to the mean. The main difference is that now the heterogeneous 

marginal utilities of X1iq and X2iq are related. In particular they are given by formulas (7) and (8). 

 

1 1 1 1*q qa Spread Tβ = +             (7) 
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( )( )
( ) ( )2 2 2 2 2

1 1

* 1 * *
* mean 1 /

q q

q q

a a Spread T
ρ

β ρ
β β

 
 = + − +
 
 

     (8) 

 

Here a2 is the design mean of the marginal utility of X2iq (i.e. β2q) and spread2q gives the 

spread of the random element of this marginal utility. The strength of the relation between β2q 

and β1q is given by ρ, which is between zero and one. The Tkq is a random variable with a triangle 

distribution, with -1≤Tkq≤1 and a zero mean. Note that the spread of the marginal utility of X2iq is 

somewhat different for each level of ρ. Formula  (8) shows that the larger ρ, the stronger the 

negative correlation between the marginal utility of X1iq and X2iq.  

 

To facility interpretation, the X1iq is again seen as the price of alternative i. For the analysing 

the effect of correlated heterogeneous marginal utilities on MNL estimates, we compare the 

estimated WTP’s with the design WTP’s. The design levels of the WTP’s are found by dividing 

the dataset mean of βiq by the mean β1q Table 5 shows the results for the estimated mean relative 

values of coefficients (i.e. WTP’s) of the 4000 different estimations and datasets per level of ρ. It 

has eight different values for ρ. Figure 5 shows the relative values from Table 5 for the estimated 

WTP’s for X2iq to the design values of the WTP for this attribute. The dashed lines in the figure 

give the area in which 90% of the estimations lie. Figure 6 does this for the WTP of X32q. 

The table also gives the average correlation between β1q and β2q per value of ρ. Note that even 

for ρ=1 the linear correlation coefficient is not -1, as β2q is related to the inverse of β1q. The 

strongest correlation between the marginal utilities we simulate is -0.6. Revelt and Train (1998) 

find correlations between the random elements of the marginal utilities as large as +0.59 and -

0.68. Though they also find some pairs of marginal utilities between which the correlation is 

basically zero. Train (2007) finds correlations between 0.1 and 0.94, with three correlation 

coefficients being larger than 0.9. Hence, these authors find some very strong relationships 

between (the random elements of) the marginal utilities. This shows that the strength of the 

correlation patterns we simulate can certainly occur in empirical applications.  

Both Table 5 and Figure 5 clearly show that the stronger the relation between the two random 

marginal utilities the larger the difference between the design value and the estimated value of the 

WTP of X2iq. Figure 5 shows that if the relation between the two heterogeneous marginal utilities 

is not that strong (say ρ<0.4) then the MNL estimates are not that affected, as then the estimated 

WTP’s for X2iq is still close to the design value. Conversely, for larger value of ρ there is a clear 

underestimation of the WTP for X2iq.  

However, the relation between the two marginal utilities has to be rather strong (ρ≥ 0.8) for 

the entire 90% interval of relative values of estimated WTP’s to be below the “estimated=design” 

line (i.e. where the relative value is 1). This indicates that correlated heterogeneous marginal 

utilities can indeed cause biased WTP estimated from MNL, where the problem is most likely to 

occur if the relation between the two marginal utilities is strong. 

Note that this negative effect of relation between the heterogeneous marginal utilities on the 

accuracy of MNL estimates is not limited to the non-linear (inverse) relation we simulate in this 

section. When we reran the simulation using a linear decreasing relation between β1q and β2q we 

found that this type of relation can also cause the WTP’s from MNL to be biased. 

The estimated WTP’s for the third attribute X32q in Figure 6 and Table 5 seems to be 

somewhat above the design levels of this WTP. However, for this WTP there is no clear pattern 

of effect of the correlation between the two marginal utilities and the “estimated=design” line is 
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well inside the 90% interval. Hence, we cannot conclude that this WTP is affected. Note that in 

the simulation of the datasets the fixed marginal utility of X32q is uncorrelated with the marginal 

utility of price (X1iq). Again the 90% interval for the WTP’s of X32q is much larger than the 90% 

interval for the WTP’s of X2iq. This seems to be caused by the larger variance in the estimates of 

the coefficient of X32q.  

 

Table 5: MNL estimations when the heterogeneous marginal utilities are negatively correlated 

 

 

Figure 5: Relative sizes estimated WTP’s for X2iq to their design values for Table 5 

0,7

0,8

0,9

1

1,1

0 0,2 0,333 0,4 0,5 0,666 0,8 1

WTP  X2i  

(β2/  β1)

95% level 

of β2/ β1

5% level 

of β2/ β1

estimated

=created

 
 

Figure 6: Relative sizes estimated WTP’s for X32q to their design values for Table 5 
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Design variables  

Strength relation between β1q and β2q  (ρ) 0 0.2 0.333 0.4 0.5 0.666 0.8 1 

Resulting correlation between  β1q and β2q   -0.00 -0.32 -0.46 -0.51 -0.55 -0.57 -0.57 -0.60 

WTP  variable (X2iq)  (β2/ β1)     

Estimated 0.168 0.168 0.164 0.165 0.160 0.155 0.151 0.143 

Design value 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 

Relative value 1.007 1.008 0.983 0.991 0.959 0.930 0.903 0.860 

WTP variable X32q (β3/ β1)       

Estimated 0.152 0.143 0.143 0.142 0.137 0.137 0.139 0.150 

Design value 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 

Relative value 1.138 1.070 1.070 1.068 1.029 1.031 1.045 1.126 

ρ 

ρ 
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Table 5 shows that if the marginal utility of X2iq is, following formula (8), a decreasing 

function of the marginal utility of X1iq, a MNL on this choice situation can result in an under-

estimation of the relative size of the (mean) marginal utility of X2iq to X1iq (i.e. β2/β1). 

Conversely, if the β2q is an increasing function of β1q, following equation (9), this can result in an 

over-estimation by an MNL of the WTP X2iq (i.e. β2/ β1).  

 

( )( )
( ) ( )2 2 2 2 2

1 1

1
* * 2 1 * *

* mean 1 /
q q

q q

a a Spread Tβ ρ ρ
β β

  
  = − + − +
  

  

    (9) 

 

The results of this simulation, with 4000 different datasets created by Monte Carlo simulation 

per level of ρ, are tabulated in Table 6 and shown in Figure 7. They show that a stronger 

(increasing) relationship of β1q on β2q, boosts the estimated WTP of X2iq, even though the design 

value of the WTP is always the same. However, different from the earlier simulation with a 

negative relation between the marginal utilities, now the 90% interval is only above the estimated 

is the design value line (i.e. one) for very strong relations between the two marginal utilities 

(ρ=1). 

 

Table 6: MNL estimations when the heterogeneous marginal utilities are positively correlated 

 

Figure 7: Relative sizes estimated WTP’s for X2i to their design values for Table 6 

 
 

Design variables  

Strength relation between β1q and β2q  (ρ) 0 0.2 0.333 0.4 0.5 0.666 0.8 1 

Resulting correlation between  β1q and β2q   -0.00 0.32 0.47 0.51 0.54 0.59 0.59 0.60 

WTP variable X2iq  (β2/ β1)     

Estimated 0.169 0.170 0.172 0.172 0.176 0.181 0.186 0.191 

Design value 0.167 0.167 0.167 0.167 0.167 0.167 0.166 0.167 

Relative value 1.012 1.017 1.033 1.034 1.058 1.089 1.116 1.147 

WTP variable X32q (β3/ β1)       

Estimated 0.152 0.157 0.158 0.153 0.161 0.156 0.161 0.158 

Design value 0.133 0.133 0.133 0.133 0.133 0.133 0.133 0.133 

Relative value 1.139 1.178 1.184 1.148 1.211 1.167 1.208 1.186 

ρ 
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A solution to the problem caused by correlated marginal utilities could be to estimate a mixed 

logit or probit model that allows the marginal utilities to be correlated (i.e. with free covariance). 

For future research it is interesting to study how mixed logit without free covariance performs 

when the heterogeneous marginal utilities are correlated.  

 

This section found that if two heterogeneous marginal utilities are correlated with each other, 

this can cause the WTP’s from MNL estimations to be biased, and that the absolute value of the 

bias increases with the strength of the correlation. If the marginal utility of the attribute to be 

valued (e.g. travel time) is an increasing function of the marginal utility of the monetary variable, 

this seems to cause a positive bias in the WTP estimated by MNL. Conversely, if there is a 

decreasing relation between the two marginal utilities, this can result in a negative bias in the 

WTP from MNL. Furthermore, this seems to be the case for both linear and non-linear relations 

between the two heterogeneous marginal utilities. The strengths of the correlations between the 

marginal utilities that we simulated, with maximum correlation coefficients of ±0.60, have also 

been observed in empirical studies using free-covariance mixed logits.  

 

6. Conclusion  
This paper studied three situations in which using Multinomial Logit (MNL) models might result 

in biased Willingness-To-Pay (WTP) estimates. A substantial number of empirical studies found 

that with mixed logit the estimated (mean) WTP’s are different than with MNL. This is surprising 

as in theory the (random) unobserved heterogeneity, for which mixed logit controls, need not 

affect the relative values of the coefficients from MNL.  

 

A well known cause of bias is endogeneity of the explanatory variables, in that some of the 

explanatory variables are correlated with the unobserved elements of the utility. We show that 

omitted variables (a form of endogeneity where an omitted variable influences the dependent 

variable directly and is correlated with an explanatory variable) can cause large biases. We 

discussed that the omitted variable problem can be quite common in discrete choice studies. For 

instance, in a study on the choice of transportation mode, the attributes price and travel time can 

be correlated with the unobserved elements, because these attributes and the relative preferences 

for the modes are partly determined by the length in kilometres of the trip about which the 

individual is interviewed. It could also be the case that the price attribute and unobserved 

elements are correlated because they are both influenced by the income of the decision maker or 

the quality of an alternative (e.g. better tomato juice is more expensive to make). 

There are estimation methods that can control for endogeneity. However, these methods are 

more difficult and time consuming to use. In the case of omitted variable bias the preferred 

solution seems to be to simply include the omitted variable in the estimation. Hence, it might be 

advisable to put extra effort in acquiring information on variables that could cause an omitted 

variable bias.  

 

To study the effect of heterogeneous marginal utilities on the WTP estimates from MNL, we 

compare the MNL estimates of the WTP’s with the design WTP’s. We find that if two 

heterogeneous marginal utilities are related, this can result in biased WTP estimates by MNL, 

which ignore the heterogeneity. In contrast, uncorrelated heterogeneity in the two marginal 



 

 

18 

utilities seems to have no detrimental effect on the MNL estimates. In our Monte Carlo 

simulations we find that the stronger the relation between two heterogeneous marginal utilities, 

the larger bias in the WTP from MNL. This is the case for both linear and non-linear relations 

between the marginal utilities. If the relation between the two marginal utilities is increasing (i.e. 

positively correlated) this bias is positive, and if the relation is decreasing the bias is negative.  

This could explain the different results in the empirical literature on whether MNL estimate 

give different WTP estimates than mixed logit, and if so in which directing. Our results suggest 

that if the MNL estimates are bias, the sign and size of this bias could be determined by the 

correlation pattern of the heterogeneous marginal utilities in the population. Thus if the 

correlation pattern is different one find a different bias and if there is no correlation between the 

heterogeneous marginal utilities the MNL estimates of the WTP’s should be unbiased.  
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