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Abstract. This paper provides a review of transport model applications that not only 
provide a central traffic forecast (or forecasts for a few scenarios), but also quantify 
the uncertainty in the traffic forecasts in the form of a confidence interval or related 
measures. Both uncertainty that results from using uncertain inputs (e.g. on income) 
and uncertainty in the model itself are treated. The paper goes on to describe the 
methods used and the results obtained for a case study in quantifying uncertainty in 
traffic forecasts in The Netherlands. 

 

1. INTRODUCTION 

 

Transport models are regularly used in many countries around the 
world to predict the international, national, regional or local transport volumes 
and traffic flows on specific network links for a single scenario or a limited 
number of scenarios. The same models are also used to give the likely 
impacts of transport infrastructure projects (e.g. new roads, wider roads, new 
railway lines) and transport policies (e.g. road pricing). All these predictions 
are point estimates, and, even when produced for several scenarios, do not 
give insight into the uncertainty margin that exists around these forecasts.  

However, for decision-making on infrastructure projects and transport 
policy measures it is very important to have an estimate not only of the most 
likely outcome, but also to know the possible range of future values for the 
transport volumes and the probabilities attached to these possible outcomes. 
It might be better to invest in a project that on average is slightly less 
profitable, but considerably less risky in terms of the variation in future traffic 
volumes, than in a more profitable, risky project. Quantifying uncertainty in 
traffic forecasts can therefore lead to better-informed decision-makers and 
better decision-making 

Although thousands of papers on transport model forecasts can be 
found in journals, conference proceedings and reports, the literature on 
quantifying uncertainty in traffic forecasts is fairly limited. 
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In this paper we present an overview of the literature on uncertainty in 
transport modelling. Further, we provide the outcomes of an application in The 
Netherlands.  

The word ‘uncertainty’ can mean many things. It can refer to (Klir and 
Wierman, 1999; Klir, 2006): 

• Discord or dispersion, due to evidence supporting mutually exclusive 
alternatives; 

• Non-specificity or imprecision, due to evidence supporting nested 
alternatives; 

• Fuzziness or vagueness, due to evidence not supporting sharp definition 
of alternatives.  

This paper is about traffic forecasts that are uncertain not because their 
definitions are fuzzy (these are sharply defined), but because the values these 
variables will take in the future are unknown. There are several (many) 
mutually exclusive values that these variables can take, each with a certain 
probability (and these probabilities sum to one; Klir and Folger, 1988). In 
terms of the classification above, we are thus dealing with dispersion. 

A transport model consists of equations combining exogenous 
variables (also called ‘inputs’) and coefficients (also called ‘parameters’) that 
express how the endogenous variables (or ‘outputs’), such as travel demand 
or link flows, depend on the exogenous variables (and possibly also on other 
endogenous variables). In forecasting for future years, forecasts for the 
exogenous variables from other sources, usually other models, are inserted 
into the model. Uncertainty in the model outputs can be due to: 

• Input uncertainty: the future values of the exogenous variables (e.g. the 
future incomes) are unknown; 

• Model uncertainty: 

o Specification error in the model equations (omitted variables, 
inappropriate assumptions on functional form and statistical 
distributions for random components);  

o Error due to using parameter estimates instead of the true values.  

Section 2 of this paper presents the main outcomes of the literature 
review on quantifying the amount of uncertainty in forecasting with transport 
models. In section 3, the method we developed for the treatment of input 
uncertainty as well as for model uncertainty is described. Section 4 contains 
outcomes for an application of this method in The Netherlands. Finally, in 
section 5 the conclusions from this investigation are listed.  

 

2. THE LITERATURE REVIEW 

 

A review of the literature on quantifying uncertainty in transport models 
was carried out. For each paper or report reviewed, we were seeking answers 
to the following questions:  
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1. What type of uncertainty has been studied (uncertainty due to model 
inputs, the model itself or both)?  

2. For which variables is uncertainty studied (e.g. link flows, value of 
time)? 

3. Which methods have been used for quantifying uncertainty in traffic 
forecasts? 

4. How is uncertainty expressed? 

5. What is the order of magnitude of the uncertainty around the forecasts?  

In our review of the international literature, we did not find a large 
number of publications on calculating uncertainty measures for transport 
model forecasts, presumably because this topic has not been studied 
frequently. In Table 1 below, the outcomes from the literature review are 
summarised.  

This overview leads to the following observations and conclusions.  

 

Type of uncertainty studied 

Seven of the 21 studies that we identified investigate both model and 
input uncertainty, nine study only model uncertainty (mainly in the model 
coefficients, usually not specification errors) and four restrict themselves to 
input uncertainty (one study did not distinguish between model and input 
uncertainty). It is remarkable that two-thirds of the studies focus on one 
specific kind of uncertainty. Especially for papers on model uncertainty, the 
research question often is not how large the total uncertainty in the outcomes 
is, but has to do with the consequences of decisions to be taken on model 
structure and sample size. 

 

Variables for which uncertainty is studied 

Only six studies out of the 21 listed have quantified the impact on link 
flows, which is the key output of traffic models that is used in project 
evaluation. However, several other papers dealt with uncertainty in revenues, 
travel times and emissions, which are usually derived by combining the 
predicted link flows with further information (e.g. fees, fares, speed-flow 
curves, emission factors). Seven studies produce uncertainty for a more 
aggregate output than link flows: total area-wide demand for one or more 
modes, measured in trips, passenger-kilometres and/or vehicle-kilometres. A 
few studies are not really looking at travel demand and related outputs, but 
only at uncertainty in time and costs coefficients or in the value of time (which 
is a ratio of model coefficients).  
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Table 1. Summary of the literature on uncertainty of traffic forecasts (pkm: 
passenger kilometres; vkm: vehicle kilometres; vmt: vehicle miles travelled). 

Publication Type of 
uncertainty 
studied 

Variables for 
which 
uncertainty 
is studied 

Methods to 
quantify 
uncertainty 

How is 
uncertainty 
expressed 

Order of 
magnitude of 
uncertainty 

Ashley, 1980 Model and 
input 
uncertainty 

Traffic flow 
on specific 
(old and new) 
road links 

Random 
draws from 
distributions 
for inputs and 
model 
coefficients 

Graph of 
probability 
distribution of 
traffic flows 

Probability of 5% 
that flow on new 
by-pass will be 
less than 18,000 
vehicles/16 hours 
and 5% that it will 
be more than 
36,000  

Lowe, et al., 
1982 

Input 
uncertainty 
(focus) and 
model 
uncertainty 

Link flows Random 
draws from 
distributions 
for inputs and 
model 
coefficients 

Percentiles Probability of 5% 
that flow will be 
less than 14,000 
vehicles/day and 
5% that it will be 
more than 20,000 

Ben-Akiva and 
Lerman, 1985 

Model 
uncertainty 

Transport 
cost and time 
coefficients 
(as an 
example) 

Analytic 
formula for 
model 
uncertainty in 
multi-
coefficients 
model 

95% 
confidence 
interval 

Not reported 

De Jong, 1989 Model 
uncertainty 
(sampling, 
coefficients) 

Number of 
households 
with a car; 
number of 
car km/year 

Analytic 
formula for 
sampling and 
estimation 
variance 

Variation and 
standard 
error 

Estimation 
standard error 
between 3% and 
6% of predicted 
values 

Fowkes, 1995 Model 
uncertainty 
(coefficients) 

Coefficients 
of modal split 
model, 
including 
costs, wait 
time and in-
vehicle time; 

Willingness 
to pay 

Repeated 
estimation on 
simulated 
datasets 

Standard 
deviation of 
estimated 
coefficients; 

Confidence 
interval 
around mode 
benefit 

95% confidence 
interval for mode 
benefit ranges 
from 0 to twice 
the average 
value. 

Kroes, 1996 Input 
uncertainty 
and model 
uncertainty 
(incl. model 
application) 

Link flows 
and revenues 

Repeated 
model runs 
for simulated 
inputs and 
coefficients 

Standard 
error and 
other 
statistics 

Not reported 

Leurent, 1996 Input 
uncertainty 

Travel time; 

Daily number 
of cars on a 
link 

Repeated 
model runs 
for simulated 
inputs 

Standard 
error 

Standard 
deviation is about 
10% of predicted 
flow 
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Publication Type of 
uncertainty 
studied 

Variables for 
which 
uncertainty 
is studied 

Methods to 
quantify 
uncertainty 

How is 
uncertainty 
expressed 

Order of 
magnitude of 
uncertainty 

Brundell-Freij, 
1997 

Model 
uncertainty 

Coefficients 
of modal split 
model, 
including 
costs, time 
and 
constants 

Repeated 
estimation on 
simulated 
datasets for 
different 
sample sizes 

t-ratios and 
confidence 
intervals for 
estimated 
coefficients 

Even with 850 
observations 5 
out of 11 
parameters are 
not significant. 

De Jong et al, 
1998 

Model 
uncertainty 
(specification, 
coefficients) 

Value of time Jack-knife 
method and 
draws from 
multivariate 
normal 
distribution  

Standard 
error 

Standard 
deviation 
between 6% and 
24% of average 
values of time 

Boyce, 1999 Model and 
input 
uncertainty 
(focus on 
inputs) 

vkm Repeated 
model 
simulation, 
drawing from 
distributions 
for input 
variables 

Standard 
errors and 
ratio of 
forecasts 

Not reported 

Grue, 1999 Model 
uncertainty 

Number of 
cars, number 
of trips by 
mode, 
elasticities 

Repeated 
model 
simulation, 
drawing from 
distributions 
for model 
coefficients 

95% 
confidence 
interval 

95% confidence 
interval ±1% for 
set of income 
coefficients on 
the total number 
of short trips and 
±8% for long trips 

Brundell-Freij, 
2000 

Model 
uncertainty 
(specification, 
sampling, 
estimation) 

Value of time As Brundell-
Freij, 1997; 

Bootstrap 
analysis 

Standard 
error of the 
value of time 

Standard error 
between 3% and 
20% of in-vehicle 
value of time 

Zhao and 
Kockelman, 
2002 

Model and 
input 
uncertainty 

Link flows Random 
draws for 
inputs and 
parameters in 
4-stage 
model 

Standard 
error 

Uncertainty 
propagates when 
going from trip 
generation to 
distribution and 
modal split, but is 
reduced in 
assignment. 

Rodier and 
Johnston, 2002 

Input 
uncertainty 

Trips, vmt, 
vehicle hours 
delay, 
(emissions) 

Sensitivity 
analysis on 
number of 
input factors 

Percentage 
over- and 
under-
prediction 

0-70% under- or 
overprediction 

Armoogum, 
2003 

Model and 
input 
uncertainty 

Number of 
trips and pkm 

Jack-knife 
and scenario 
analysis 

Variance and 
percentage 
deviation 
from 
reference 

Model 
uncertainty: for 
trips in 2030 
variance is 27% 
of the mean 
(pkm: 6%).  
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Publication Type of 
uncertainty 
studied 

Variables for 
which 
uncertainty 
is studied 

Methods to 
quantify 
uncertainty 

How is 
uncertainty 
expressed 

Order of 
magnitude of 
uncertainty 

Boyce and 
Bright, 2003 

Model and 
input 
uncertainty 
(focus on 
inputs) 

Revenue 
from 
privately-
financed 
project  

Repeated 
model 
simulation, 
drawing from 
distributions 
for input 
variables; 
Scenario 
analysis 

Percentiles; 
private 
funders want 
to see 95-
99% 
probability of 
no loss. 

Only the worst 
scenario fell 
below the first 
percentile 

Ecorys, 2003 Input 
uncertainty 

Revenues Sensitivity 
analysis 

Different 
revenue 
amounts 

Revenues 1.2 or 
3.9 mln 
depending on 
traffic growth 

Ministerie van 
Financiën and 
CPB, 2003 

No distinction 
made 
between 
model and 
input 
uncertainty 

Financial 
outcomes of 
projects 

Add a risk 
paragraph in 
project 
assessment 

Not reported Not reported 

Research 
Results Digest, 
2003 

Model 
uncertainty 
(coefficients) 

Number of 
pavement 
sections 

Jack-knife 
method 

Correlation 
coefficient, 
standard 
error 

Not reported 

Schrijver et al., 
2003 

Input 
uncertainty 

Travel time Random 
draws from 
inputs 
distributions 

Interval 
around mean 
travel time 

Not reported 

Beser 
Hugosson, 
2004, 2005 

Model 
uncertainty 
(coefficients) 

Total and OD 
demand by 
mode, link 
flows, train 
lines and 
value of time 

Bootstrap 
sampling, 
repeated 
estimation 
and model 
application 

95% 
confidence 
interval 

95% confidence 
interval between 

±7% and ±14% 

 

  

Methods for reflecting the impact of input uncertainty on forecast uncertainty 

We split up the discussion on the methods to quantify uncertainty in 
traffic forecasts in two parts: one on the effect of input uncertainty on output 
uncertainty and one on the impact of model uncertainty on output uncertainty. 

All methods encountered in the literature for quantifying the amount of 
input uncertainty use some form of repeated model simulation (sensitivity 
testing). The same model is applied over and over again, with different inputs. 
A commonly used method for generating different inputs is scenario analysis. 
However, in scenario analysis no probabilities are attached to the various 
scenarios under study. This makes calculation of overall standard errors or 
related uncertainty measures for the model outcomes impossible. Many of the 
studies investigated postulate statistical distributions for the input variables 
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and then draw (usually at random, sometimes at specific percentiles) input 
values from these distributions. The resulting values are then used in model 
runs. Final outcomes for uncertainty are calculated from the variance over all 
the runs for the different input values. This seems to be the standard 
approach to produce input uncertainty.  

Most studies use univariate distributions for the input variables; 
correlation between inputs is ignored (unlike scenario studies that try to 
sketch consistent futures). More realistic estimates of uncertainty can be 
derived if one takes account of correlations between inputs (e.g. income and 
car ownership) by drawing from multivariate distributions, but this requires 
knowledge on the correlations. Lowe et al. (1982) used an experimental 
design (as in an SP survey) on the input variation, which can increase the 
efficiency of the process of running the model (not all combinations are 
needed).  

 
Methods for reflecting the impact of model uncertainty on forecast uncertainty 

For quantifying model uncertainty in transport forecasts, we find a 
wider diversity of approaches than for input uncertainty. Some studies used 
analytic expressions for the variance of the endogenous variable that result 
from using parameter estimates for the influence of the exogenous variables. 
This can only be done if the model equations are relatively straightforward. 
For more complicated models, these expressions become very cumbersome 
and often only approximations (e.g. from Taylor series expansion) can be 
given.  

To obtain proper t-ratios or standard errors for the model coefficients in 
situations with specification error (such as repeated measurements in panel 
and SP data), the Jack-knife method and the related Bootstrap method are 
sometimes used (see Cirillo et al., 2000). In the Jack-knife, sub samples are 
created from an original sample by systematically omitting a small fraction of 
the data. The Bootstrap is applied by sampling at random from the original 
sample with replacement.  

After having calculated the proper standard errors for the parameters, 
these can be used either in an analytic calculation of the standard error (due 
to estimation) of the model outcomes or as information on the statistical 
distribution of the parameters of the model, from which values can be drawn 
for model simulation runs, similarly to the method used for input uncertainty. 

Again, it is important to take account of the correlations (between the 
parameter estimates), either in the analytical equations or in sampling from a 
multivariate distribution. 

Ashley (1980), Lowe et al. (1982), Boyce (1999), Boyce and Bright 
(2003), Zhao and Kockelman (2002) and Beser Hugosson (2004, 2005) all 
study the problem of how a given transport model can not only produce a 
central estimate of traffic volume or revenues, but also uncertainty margins 
around these. The first five studies mentioned use Monte Carlo simulation for 
the inputs and for the parameter values instead of analytical methods. Zhao 
and Kockelman explicitly study the problem of propagation of errors: when a 
number of modules are used sequentially, errors can become bigger 
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(reinforcing initial deviations) or smaller (equilibrium mechanisms). All these 
five studies use relatively simple aggregate transport models. In a paper on 
the Swedish national passenger transport model, Beser Hugosson (2004, 
2005) uses the Bootstrap method on disaggregate mode-destination models, 
but leaves out input uncertainty, trip frequency models and congestion 
feedbacks. Analytical methods to calculate the uncertainty were not used.  

Grue (1999) used random draws from multivariate normal distributions 
(with correlations) to derive output uncertainty due to model (parameter) 
uncertainty. The transport model was the disaggregate national transport 
model for Norway, with submodels for the possession of driving licences, car 
ownership, the number of trips (distinguishing long and short distances, 
including competition between modes). This application however did not 
include input uncertainty, destination choice models or congestion feedbacks. 

 

How is uncertainty expressed? 

Uncertainty in forecasted values can be expressed in many ways, but 
measures that were often used in the literature are: 

• The variance of the forecast; 

• Its standard deviation (square root of the variance); 

• Its 95% confidence interval (-1.96 times the standard deviation to +1.96 
times the standard deviation); 

• Percentiles of its distribution, e.g. the lowest 1% or 5% for revenue or 
vehicle flow forecasts.  

 

Order of magnitude of uncertainty 

Many of the studies do not present quantitative outcomes and those 
that do are sometimes not comparable because they use different 
expressions. For link flows and total area-wide travel demand by mode 
studies find 95% confidence intervals of 5-14% of the mean (on both sides of 
the mean) for model uncertainty. This of course depends clearly on the 
sample size used in model estimation. Studies on input uncertainty or both 
model and input uncertainty obtain 95% confidence intervals for link flows 
between 18% and 33% of the mean. There are indications in the literature that 
input uncertainty is more important for uncertainty in traffic forecasts than 
model (parameter) uncertainty. For the value of time, different studies found 
95% confidence intervals ranging from 6% to 48% of the mean value 
(depending especially on sample size). 

 

Relation between the literature reviewed and the application presented in this 
paper 

The literature either uses relatively simple aggregate transport models 
to generate output uncertainty, or (when it uses more complex models) only 
provides input uncertainty or model uncertainty. In our application to The 
Netherlands (see sections 3 and 4), we move beyond the literature reviewed, 
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in that we provide output uncertainty in terms of numbers of tours, kilometres 
and vehicle flows for both model and input uncertainty, based on a relatively 
sophisticated disaggregate model system, including impacts through tour 
frequency, mode and destination choice, with and without congestion 
feedbacks. The lessons that we learnt from the literature on the choice of 
methodology are described in section 3.2. 

 

3. METHOD FOR QUANTIFYING INPUT AND MODEL UNCERTAINTY IN 
THE DUTCH NATIONAL MODEL SYSTEM  

 

3.1 A short introduction to the model  

The remainder of this paper is about an application on quantifying 
uncertainty in traffic forecasts in The Netherlands. First, we shall briefly 
describe the transport model used, which is the Dutch national model system, 
LMS (‘Landelijk Model Systeem’). The LMS was first developed in the 80’s 
and has been used since for several policy documents on transport policy and 
for the evaluation of large transport projects (also see Gunn, 1999; Daly, 
2000). It is a forecasting model for the medium to long term (the forecast year 
often being 20-30 years ahead), with a focus on passenger transport (freight 
traffic appears only in assignment of an exogenous OD truck matrix to the 
road network). It covers the whole of The Netherlands and some neighbouring 
areas, distinguishing more than 1,300 zones. The LMS consists of random 

utility submodels at the household or person level for: 

• Licence holding, constrained to exogenous forecasts; 

• Car ownership, constrained to exogenous forecasts; 

• Tour frequency by travel purpose. A tour is defined as a round trip (e.g. 
home-work-shop-home). Here we distinguish eleven travel purposes. For 
each of these there is a model for the choice between zero tours1 and one 
or more tours and a model for subsequent tours.  

• Mode and destination choice: there are eight of these models, one for 
each of eight travel purposes. The modes distinguished are: car-driver, car 
passenger, train, bus/tram/metro, non-motorised. 

• Departure time choice by travel purpose. 

The model system is applied in a pivot-point fashion (Daly et al, 2005) 
whereby the demand models produce growth factors for the changes between 
the base year and forecasts year for each origin-destination relation by mode, 
purpose and time of day, and a given base matrix represents the traffic 
pattern in the base year.  Then, the OD car driver demand matrices are 
assigned to the road network and after initial assignment there is a feedback 
to mode, destination and departure time choice (iterative application). 

The models for which we study uncertainty in the LMS are the tour 
frequency models and the mode-destination choice models. 
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3.2 Conclusions on the choice of methodology from the review 

For quantifying input uncertainty the most natural approach is Monte 
Carlo simulation. All the literature reviewed that dealt with input uncertainty 
used some variant of this method. We think it is important to include 
correlation between input variables (because some important ones are highly 
correlated, such as income and car ownership). Therefore, we decided to 
sample from a multivariate normal distribution for the input variables. How this 
distribution was derived is described below.  

On the basis of the review of the literature we concluded that the 
preferred method for quantifying the model errors is either a combination of 
the Jack-knife/Bootstrap method to correct for specification error and Monte 
Carlo simulation for the uncertainty due to estimation, or the analytic method. 
The latter can only be used for relatively simple model specifications. We 
investigated whether analytic expressions could be used for the LMS tour 
frequency models and the mode-destination choice models. We derived the 
analytical expressions, but also found that very long run times would be 
required to evaluate these expressions. Therefore we decided to use Monte 
Carlo simulation for the model uncertainty as well.  

 

3.3 Input uncertainty 

First of all, a list of the most important autonomous variables 
influencing transport demand has been prepared (principally by going through 
the explanatory variables of the LMS tour frequency and mode-destination 
choice models, and the zonal targets in the population forecasting procedure 
QUAD2). This list does not include the policy variables that can also be found 
in these models (such as public transport fares, parking costs, the speeds of 
the transport modes), that can be influenced by users of the models 
(government at different levels, public transport operators). The sensitivity of 
the link flows to such variables is usually handled through policy sensitivity 
runs: changing one policy variable at a time, relative to a reference case, or 
by comparing the outcomes for different policy packages. 

Licence holding is not included, as it is so high now (among the eligible 
age groups) that for the future only very limited variation is possible. The total 
amount of freight traffic, international traffic and the correction for changes in 
working hour practices were not varied in the simulations with LMS. 

The list of the main autonomous forces for simulation of input 
uncertainty on transport demand (defined here as tour generation and mode-
destination choice) is as follows: 

• Household disposable income; 

• Car ownership; 

• Car cost per kilometre (only the fuel cost part, which is partly an 
autonomous and partly a policy variable, but not the toll and parking cost 
which are fully policy variables); 

• Number of jobs (by sector), which serves as an attraction variable; 

• Population by age group (or population and average age); 
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• Household size; 

• Occupation (employed or unemployed by gender) and education (number 
of students per type of education); 

• Part-time and full-time employment. 

Time series data on these variables over a long period (1960-2000) 

was collected and analysed. For one variable (part-time working) no 
consistent data was available and in a few cases data was available only for 
1970-2000. In the long run, periods of high growth and periods of low growth 
or even decline occur alternately (the business cycle). Therefore the income 
growth expectations for a 20-30 year horizon, which is likely to include a few 
of each, become smoothed. Other variables (number of jobs, number of cars, 
labour force) are also related to the business cycle. To express this 
phenomenon, we calculated 20-year moving averages (e.g. 1960-1979, 1961-
1980, etc.). A time horizon of 20 years is not unusual for project evaluation. 
Often even longer periods (such as 30 years) are applied.  

We used the standard deviations and correlations of the 20-year 
moving averages in the determination of the multivariate normal distribution 
from which the input values for LMS runs are to be drawn. The idea is that the 
amount of variation in the input variables over the next 20 years is determined 
from all 20-year moving averages over the past 40 years (an exception is car 
ownership for which we expect a trend towards saturation).  

In order to determine the input variables for the simulation with the 
LMS, draws from a multivariate normal distribution were made. The Cholesky 
decomposition was used here as a method to generate a correlated 
multivariate normal distribution on the basis of uncorrelated univariate normal 

draws η (see for instance: Press et al., 1988). Multivariate random draws δ 

are then calculated using initial averages µ and the corresponding Choleski 

factor (matrix Λ). The Choleski factor expresses K correlated terms as arising 
from K independent components, with each component “loading” differently 
onto each term. For any pattern of covariance, there is some set of loadings 
from independent components that reproduces that covariance. Equation (1) 
shows the functional form for two variables, indexed 1 and 2. 

 

1 1 11 1

2 2 21 1 22 2

δ µ η

δ µ η η

= + Λ ×

= + Λ × + Λ ×
       (1) 

where 

δ = the multivariate normal draw (vector) 

µ = the initial average (vector) 

Λ = the Choleski factor matrix 

η =  the random draw (vector) generated from a univariate normal 
distribution 

The random number generator was replaced by Halton draws, which 
provides a better distribution (greater coverage, i.e. fewer empty spaces) over 
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the ‘random’ space. Several Halton methods were tested initially. The shuffled 
Halton (see Hess, 2003) appeared to work best, and was selected. 

The numbers drawn were then converted into LMS input variables and 
the models were run for these values. Every LMS run has a different set of 
values for model coefficients, explanatory variables and QUAD targets. All 
variables for which uncertainty is studied refer to national totals. In the LMS 
runs, the percentage changes in these national totals were applied to the 
zonal variables (e.g., all zones get richer by x %). This means that the relative 
distribution of these variables over the zones did not change.  

Twenty draws were made for the input variables, which are used both 
for twenty LMS runs for the reference scenario and the twenty LMS runs with 
the new infrastructure project (see section 4), keeping the model coefficients 
constant. For the model coefficients (see section 3.4 below) again twenty 
draws were made, which were used in 40 runs (reference and project 
situation) as well, keeping the input variables constant. The first ten draws for 
input variables were further combined with the first ten draws for the model 
coefficients for reference and infrastructure scenario (twenty runs in total). 
This sums to a total of 100 LMS runs, 50 reference runs and 50 with the new 
infrastructure project.  

 

3.4 Model uncertainty  

In calculating the uncertainty around the link flows we focussed on the 
tour frequency models and the mode-destination choice models in the LMS. 
We did not include specification and estimation error in the licence holding 
and car ownership models (but treated the future year national car ownership 
total as one of the input variables to be varied, as described above). Similarly, 
we treated the parameters in the time of day choice models and the 
assignment (e.g. the speed-flow curves) as having been determined without 
error.  

The general approach in this application therefore is that we study 
variations in the OD matrices (due to input variables and the tour frequency 
and mode-destination choice models) and assign these using the same 
assignment procedures, without introducing extra variation due to 
uncertainties (e.g. through Monte Carlo draws) in the departure and route 
choice functions. In this project we study the impact on the predicted flows for 
a set of selected links (three to four links in one direction). The assignment 
mechanism itself can change the amount of uncertainty (e.g. reduce it, as in 
Zhao and Kockelman, 2002), because larger transport demand leads to more 
congestion and this increases travel times, which reduces demand for specific 
routes, periods and modes, etc. This also implies that we had to run the full 
assignment procedure. The result of the first iteration were stored separately, 
to see the effect without the congestion feedback mechanism.  Freight 
matrices for road transport were added to the OD matrices for cars that were 
varied in this project, but these freight matrices did not vary (fixed background 
vehicle loads). 

Using the Bootstrap method, we re-estimated all tour frequency models 
and the commuting mode-destination models. This slightly increased most of 
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the standard deviations (decreased the t-ratios) of the tour frequency models, 
to reflect the additional uncertainty due to misspecification of the model (e.g. 
in the functional form, the independence and homoskedasticity assumptions 
on the error distribution, but also including misspecification due to omitted 
variables). The correlations between the parameter estimates were taken 
from the Bootstrap estimation as well. We found no systematic differences 
between the Bootstrap estimates of the commuting mode-destination model 
and the original estimates for this model (there were differences, usually 
small, in both directions). Therefore we used the standard deviations and 
correlations of the original estimation runs for the mode-destination models for 
all purposes other than commuting. 

After this, the tool described in section 3.3 (Choleski decomposition) 
was used to generate twenty random draws from a multivariate normal 
distribution with this variance-covariance matrix. For the twenty-two tour 
frequency models (initial tour and multi-tour models) and the eight mode-
destination models within the LMS the coefficients were changed by taking 
random draws from a multivariate normal distribution. For each of the twenty 
sets of coefficients, the models were run. Coefficients that have a fixed value 
(of one), such as structural coefficients for multinomial logit models and 
coefficients for the basic size (attraction) variables, have not been changed. 

 

4. RESULTS FOR THE DUTCH NATIONAL MODEL SYSTEM 

 

The project for which uncertainty in traffic forecasts is studied using the 
LMS is the extension of the A16 motorway in the Rotterdam area (see Figure 
1). This concerns a major new road. At present, the A16 enters the Rotterdam 
area from the South (Breda, Dordrecht) and continues until the 
Terbregseplein, where it meets the A20. The extension would continue north 
of the A20, and after a few kilometres it would go west until it meets the A13. 
This new road has three new links in the LMS, with several access links. It 
would form an alternative for several existing routes, but especially for the 
A20 between the Kleinpolderplein and the Terbregseplein.  
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Figure 1. The road network in the Rotterdam area in 2020 (with thick lines 
indicating the new road project, and arrows the links selected for analysis). 

 

 

The uncertainty of the LMS forecasts was studied both at the national level 
and at link level: 

• National level: number of tours and passenger kilometres, by mode 
and purpose, irrespective of whether this takes place on the network or 
not. This is output from the mode-destination component of the LMS.  

• Link level: traffic flow (in passenger car equivalent units), travel times 
(hours) and vehicle hours lost on a number of selected links: links on 
the new road (links 1 and 2 in Figure 1), some directly affected links 
(links 3 and 4) and a sort of ‘control’ link. 

In total, 100 LMS runs were carried out, as indicated in the previous section: 

• 50 runs for the reference 2020; 

• 50 runs for the reference 2020 with the extended A16 project. 

Each set of 50 runs consists of  

1. 20 runs for variation in the model input variables;  

2. 20 runs for variation in the model coefficients; 

3. 10 runs with variation in both model input variables and coefficients. 

In Table 2 are results for the Reference 2020 simulation with the LMS tour 
frequency and mode destination models, at the national level by mode for the 
sum of all purposes. 
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Table 2. Effect of input uncertainty and model uncertainty on the predicted 
number of tours for the reference situation. 

 

 
 

Mean 
(millions of 

tours per day) 

Standard 
deviation (as % of 

mean) due to 
input uncertainty 
keeping model 

coefficients 
constant 

Standard 
deviation (as % of 

mean) due to 
model uncertainty 

keeping model 
inputs constant  

Standard 
deviation (as % of 

mean) due to 
model and input 

uncertainty  

Car driver 11.7 11.7% 0.8% 12.1% 

Car passenger 3.9 6.3% 0.9% 6.0% 

Train 0.7 15.3% 2.4% 16.2% 

Bus/tram/metro 0.7 12.2% 1.4% 12.1% 

Slow modes 15.4 4.1% 0.5% 4.3% 

Total 32.4 1.8% 0.6% 1.9% 

 

In assessing the input error margins, one should keep in mind the 
amount of variation in the input variables that was introduced in the LMS runs. 
The average income increase of 65% between 1995 and the reference 2020 
for instance was varied from a 13% increase to a 110% increase. 

The standard deviations in the numbers of tours that are due to input 
variation at this level are between 4% and 16% (by mode). For the total 
number of tours over all modes, the standard deviation is even below 2%. The 
total across all modes does not include the distribution over modes from the 
mode-destination models, and therefore it can be predicted more precisely.  

The standard deviations that result from model uncertainty are clearly 
smaller than for input uncertainty. This happens for all of the modes and for 
the total over modes. For instance for car drivers this standard deviation is 
only 0.8% of the mean for tours, and for all modes together it is 0.6%. 
Uncertainty in the input variables such as income and car ownership clearly 
dominates the uncertainty that is due to the uncertainty in the model 
coefficients. The amount of model uncertainty we find here for the LMS is 
clearly smaller than the 4%-7% (standard error as % of the mean) that Beser 
Hugosson (2004, 2005) found in Sweden for total demand by mode, only 
using mode-destination choice (no impact on tour frequencies, no congestion 
feedback). We think that the main reason for the relatively low model errors is 
the large sample that was used in estimation of the LMS (the national travel 
survey used contains trip diary information for more than 160,000 persons). 
Grue (1999) also found for the Norwegian national model that the confidence 
intervals for model (parameter) uncertainty were ‘rather small’. This 
conclusion however was based on an investigation of the impacts of variation 
in a set of coefficients (either income or transport time and costs) at a time, 
not simultaneous variation of all important coefficients as in our application. 

As can be seen in Table 2, train and bus/tram/metro use are more 
uncertain than the use of car and the non-motorised modes. The model 
uncertainty is higher, probably because there are fewer observations in the 
estimation data for these modes and the relevant coefficients are therefore 
less well estimated. Also the input uncertainty is higher for public transport: 
the use of public transport is more sensitive to how exogenous variables, such 
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as income and the composition of the population, will develop than the use of 
other modes.  

For car driver kilometres (see Table 3), the standard deviation due to 
input uncertainty is 8.3% of the mean. The 95% confidence interval from the 
Normal is from 287 million to 399 million car kilometres. For car drivers, the 
relative input uncertainty for passenger kilometres is smaller than for tours. 
For car passenger and the slow modes however, the reverse in true.  

 

Table 3. Effect of input uncertainty and model uncertainty on the 
predicted number of passenger kilometres for the reference situation. 

 

 
 

Mean 
(millions of 
kilometres 
per day) 

Standard 
deviation (as % of 

mean) due to 
input uncertainty 
keeping model 

coefficients 
constant 

Standard 
deviation (as % of 

mean) due to 
model uncertainty 

keeping model 
inputs constant  

Standard 
deviation (as % of 

mean) due to 
model and input 

uncertainty  

Car driver 343 8.3% 0.7% 8.3% 

Car passenger 107 10.2% 3.9% 11.0% 

Train 71 14.4% 2.5% 15.2% 

Bus/tram/metro 21 10.4% 2.1% 10.0% 

Slow modes 80 4.7% 0.5% 5.0% 

Total 622 4.4% 0.9% 4.5% 

 

It is an interesting outcome that the errors in the kilometres are of the 
same order of magnitude as the errors in the numbers of tours, while for 
policy simulations that change travel times and costs, the kilometres are 
usually more volatile than the tours (e.g. greater time and cost elasticities for 
kilometres). Since this happens for all modes, the explanation cannot (only) 
be the effect of congestion (that would dampen the kilometrage shifts). We 
conclude that runs that change time and cost affect destination choice more 
than mode choice, and tour frequencies not at all3. The changes in the input 
variables performed here (of which income and car ownership are the most 
important) affect tour frequency and mode choice more than destination 
choice, and therefore lead to broadly similar effects in terms of tours and 
kilometres.  

In most cases the standard deviations for input and model uncertainty 
in tours or passenger kilometres are slightly higher than those for input 
uncertainty alone, but in some cases the standard deviations for both sources 
of uncertainty are the same or just below those for input uncertainty. This is 
probably an artefact of having performed only a limited number of LMS runs 
for the combination of the two sources of uncertainty. But, as for tours, the 
input uncertainty in the number of passenger kilometres is substantially 
greater than the model uncertainty. 

For the situation with the project, the variation in tours and kilometres is 
of the same order of magnitude as for the reference situation. Again, the 
uncertainty due to input variation dominates the output variation. The relative 
uncertainty around the difference in total car tours or kilometres (with and 
without the road project) from the tour frequency and mode-destination 
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models is much larger than the above-mentioned results, but this concerns 
very small amounts of traffic (at the national scale). 

We also had a look at the simulation results at the national level for the 
reference 2020 from the tour frequency and mode-destination models, without 
congestion feedback (congestion travel times are led back to the travel 
demand choice models), to see whether the congestion feedback leads to a 
damping of the variation on tours and kilometres or to a propagation of errors. 
We concluded that the uncertainty in the number of tours is the same with and 
without congestion feedback, and that with congestion feedback the variation 
in kilometres is slightly smaller. 

In Table 4 are the key outcomes for the vehicle flow in passenger car 
equivalent units at selected links (in the reference we only have three links, in 
the situation with the project we have five, but in Table 4 for the project 
situation we only present results for the new link in both directions). This 
variable refers to a full 24-hours day, not just to the peak hours. 

 

Table 4. Effect of input uncertainty and model uncertainty on the predicted 
vehicle flows. 

 
Selected link 

(between 
brackets: link 

number in 
Figure 1) 

 
 

Mean 
(number of 
vehicles per 
day*1,000) 

Standard 
deviation (as % of 

mean) due to 
input uncertainty 
keeping model 

coefficients 
constant 

Standard 
deviation (as % 
of mean) due to 

model uncertainty 
keeping model 
inputs constant  

Standard 
deviation (as % 
of mean) due to 
model and input 

uncertainty  

Reference 
situation: 

    

A20 Rotterdam-
Gouda (link 4) 

 
83 

 
4.1 

 
0.3 

 
4.3 

A20 Gouda-
Rotterdam (link 
3) 

 
87 

 
4.6 

 
0.6 

 
4.7 

A2 Amsterdam-
Utrecht 

 
115 

 
8.3 

 
1.3 

 
8.3 

Project 
situation: 

    

New link (A16) 
Rotterdam-Delft 
(link 1) 

 
38 

 
11.9 

 
1.2 

 
12.3 

New link (A16) 
Delft-Rotterdam 
(link 2) 

 
30 

 
14.8 

 
6.4 

 
15.7 

 

The standard deviations of the link flows in the reference situation are 
between 4% and 9% for input uncertainty, and around 1% for model 
uncertainty. Beser Hugosson (2004, 2005) found 4%-6% for the impact of 
model error on link flows in Sweden. For the number of hours travelled, the 
standard deviations on the A20 and A2 are between 4 and 13% for input 
variation and 1-3% for model uncertainty. Again input uncertainty clearly 
dominates model uncertainty. The number of hours lost due to congestion, 
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labelled ‘Q-hours’, can have a much larger uncertainty, especially the relative 
uncertainty can be high when the absolute numbers of Q-hours are low.  

The standard deviations for the differences between the situation with 
and without the road project in link flows for links competing with the new road 
are 8-12% for input uncertainty, 5-6% for model uncertainty and 7-13% for 
combined uncertainty. So for differences between the situation with and 
without the project, the model errors are relatively more important than for the 
absolute traffic forecasts, where the input errors dominate the picture. Again 
the Q-hour differences are very uncertain, and the difference in hours 
travelled are in between. With regards to the evaluation of the project (the A16 
extension in this example): the flow on this new link is predicted with a 
substantial level of uncertainty: the link flows can be up to 30% higher or 
lower than in the most likely case (also see Table 4, bottom two rows). This 
means that for cost-benefit analysis of the project, relatively large variations in 
the benefits need to be evaluated to account for uncertainty in the inputs and 
models.  

We also carried out another case study on quantifying uncertainty for a 
regional model. Here we used the NRM (New Regional Model, a model 
derived from and similar in general structure and coefficients to the LMS) 
Noord-Brabant (with permission from the Regional Directorate, who own this 
model system, and kindly co-operated in providing the appropriate input files). 
As for the LMS application, we selected a road project, in this case the 
Eindhoven eastern ring road (‘Oostelijke Randweg’), that would complete the 
beltway around the city of Eindhoven. The outcomes in terms of relative 
uncertainty are generally speaking quite similar to those of the application of 
the LMS at the national level.  

 

5. CONCLUSIONS AND RECOMMENDATIONS 

 

In this paper we presented a review of the literature on uncertainty in 
traffic forecasts, and a new application in The Netherlands. The key outcomes 
are summarised below. 

 

Review of the literature 

We found that the literature on quantifying uncertainty in traffic 
forecasts is fairly limited. We distinguished between input uncertainty (e.g. on 
the future incomes and car ownership levels) and model uncertainty (including 
specification error and error due to using parameter estimates instead of the 
true values). 

For quantifying the amount of input uncertainty all contributions that we 
found in the literature use some form of repeated model simulation (sensitivity 
testing). Usually statistical distributions are postulated for the input variables 
and then random draws are made from these distributions. This generates 
input values that are used subsequently in model runs. The uncertainty is 
calculated from the variance over all the runs for the different input values. 
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Most studies apply univariate distributions for the input variables (ignoring 
correlation between inputs).  

Several methods have been found in the literature for quantifying 
model uncertainty in transport forecasts. A few studies used analytic 
expressions for the variance of the endogenous variable that results from 
using parameter estimates for the influence of the exogenous variables. For 
complicated models, these expressions become very cumbersome. The Jack-
knife and Bootstrap method can be used to obtain proper t-ratios or standard 
errors for the model coefficients in situations with specification error (such as 
repeated measurements in panel and SP data). These more correct standard 
errors of the parameters can be used either in the analytic calculation of the 
standard error of the model outcomes or as information on the statistical 
distributions from which values can be drawn for model simulation runs. 
Again, it is important to take account of the correlations (between the 
parameter estimates). 

 

Development of a method for LMS  

In our analysis of uncertainty in traffic forecasts from the Dutch national 
model system LMS, we used existing time series as the key source of 
information on means, standard deviations and correlations of input variables, 
and applied these to get multivariate distributions for the model input 
variables, to account for correlation between the input variables.  

Analytic methods to quantify the model uncertainty were considered 
and the analytic expressions were worked out, but the evaluation of these 
expressions would take too much computer time. For quantifying the model 
errors we used the Bootstrap method to correct for specification error and 
Monte Carlo simulation for the uncertainty due to estimation, for the tour 
frequency and mode-destination choice models in the LMS.  

 

Outcomes for LMS  

Both the input variables and the model coefficients of the LMS tour 
frequency and mode-destination models were varied. Half of the model runs 
were for the reference situation 2020, the other half for the situation with a 
specific road project (extension of the A16 near Rotterdam). 

We found substantial, but not very large, uncertainty margins for the 
total number of tours and kilometres (by mode) in the study area of the LMS 
and for the vehicle flows on selected links. The uncertainty margins for 
differences between a project and a reference situation are not much larger, 
unless these differences are of a small magnitude. In many cases, there is 
greater variation in the number of hours lost due to congestion than in hours 
travelled. The contribution of input uncertainty (e.g. in future incomes or car 
ownership levels) to these errors is generally much larger than that of model 
uncertainty (e.g. coefficients estimated with some error margin). 

These outcomes for uncertainty in traffic forecasts include variation in 
most of the input variables for the LMS travel frequency and mode-destination 
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choice models, as well as the error in these models. Sources of variation that 
were not included are: 

• Uncertainty in the base matrices, which are combined with model 
outcomes for a base year and a future year to obtain forecasts for the 
future year4.  

• Errors in the licence holding and car ownership models (note however 
that errors in the total number of cars were included in the input 
variation). 

• Errors in the assignment and time-of-day procedures. These models 
were used in the LMS runs carried out (for different demand forecasts 
from the tour frequency and mode-destination models) but without 
varying their parameters.  

• Uncertainty due to a different distribution over zones. In our simulations 
we applied the same proportional change for some variable in each 
zone. 

• Uncertainty about the distribution of workers between part-time and 
full-time workers. 

• Because in our method for quantifying uncertainty we relied on the 
long-run equilibrium models LMS, we were not able to present the time 
path of the uncertainty estimates, but only final 2020 outcomes. 
Nevertheless, especially for PPP projects, the returns in the first years 
and the uncertainty attached to these are often very important. This 
would require dynamic models. 

The distribution over zones can to some degree be incorporated in 
scenario studies, where different zonal distributions can be postulated. 
Scenario studies however do not include probabilities for the variables and 
future states that they describe and can therefore not be used to calculate 
uncertainty margins. Our study overlaps to some degree with a scenario 
approach in that both methods try to include correlations between attributes 
that characterise the future state. We went beyond scenarios by using a 
specific probabilistic approach so that we could produce quantitative 
uncertainty estimates. On the other hand a scenario approach could 
complement the approach used here, because it offers a way to include 
varying assumptions on the zonal distribution (e.g. of incomes). Conversely, 
the probabilistic simulation approach using information from past time series 
on input variables (including correlations) could also be used in the generation 
of scenarios, by selecting a limited number of settings for the input variables 
from the simulations (e.g. one intermediate, one where factors influencing 
demand for travel take on low values and one where the factors take high 
values). 

The method for quantifying uncertainty that was developed in this 
paper can be used in the assessment of proposed transport projects where 
the LMS is used to provide the traffic demand changes. But since the method 
is very computer-intensive (requiring 100 model runs; a smaller number of 
runs would not be acceptable), this will only be feasible for the evaluation of 
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major transport projects. For other projects, the quantitative outcomes for the 
applications presented in this paper can provide guidance.  

 

Notes 

1. For non-home-based purposes, trip frequencies are modelled rather than tour 
frequencies; mode and destination choice are also modelled at trip level for 
these purposes. 

2. There is a computer routine QUAD (from ‘quadratic’) within the LMS that 
produces the joint distribution of socio-economic attributes of the households, 
given the total population and the marginal distributions for these attributes, 
both from external sources. This routine is based on quadratic optimisation, 
following Daly (1998). 

3. The fact that changes in time and cost do not affect tour frequencies is simply 
due to model specification: the tour frequency models do not include an 
‘accessibility’ effect. 

4. The LMS base matrices were estimated on multiple data sources using formal 
maximum likelihood methods. This means that standard deviations for matrix 
uncertainty should be available and could be used in simulation methods to 
include uncertainty from the base matrices. 
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