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1. Introduction 
 

In transport analysis, discrete choice models are often specified to contain parameters which 

must be estimated from observed behaviour, often using the maximum likelihood criterion.  

This criterion has the advantages that it yields minimum-variance, asymptotically unbiased 

and asymptotically multivariate-normal estimates and also gives asymptotic estimates of the 

errors associated with those estimates.  These error estimates allow analysts to assess the 

success of their estimation, using techniques such as t ratios or (for non-linear models) 

asymptotic t ratios. 

 

Once estimated, models can be used in a number of ways, such as: 

• the calculation of simple functions of the parameters – in an important example the 

calculation of values of time as the ratio of time and cost coefficients; 

• the prediction of future behaviour of populations, using aggregation techniques such 

as sample enumeration; 

• the calculation of user benefit measures. 

Outputs of all of these applications are, of course, functions of the estimated parameters and, 

as such, are subject to the errors associated with the estimation of the parameters.  It is 

important therefore to be able to assess the error associated with statistics derived from the 

estimated parameters. 

 

Conventionally, two techniques have been used to derive these errors. 

• Exploiting the asymptotically multivariate normal distribution of the estimates, text-

book results concerning functions of normal variates have been used to derive 

distributions, and hence error measures, for simple functions of the parameters.  This 

procedure has often been followed to derive error estimates for values of time. 

• Sampling procedures have been applied to the estimated parameters, again treating 

them as multivariate normal distributions, and distributions of the relevant functions 

of the sampled values have been used to obtain information about the distribution of 

the function required. 

In the paper it is shown that the first approach is inefficient and can better be replaced by the 

method set out in the paper.  The second approach can also be replaced, with a substantial 

saving in convenience and time, when the functions concerned are not too complex.  

However, in very complicated situations or for very large models sampling from the 

parameter distribution remains the only practical approach (see de Jong et al., 2005b). 

 

The proposed approach is inspired by the well-known approximation for the variance of a 

function of random variables as a function of the covariance matrix of those variables and the 

first derivatives of the function with respect to those variables.  In Section 2 of the paper it is 

shown that application of this formula gives the same results for a number of important cases, 

including the ratio of coefficients, as the ad hoc calculation from first principles given in text 

books.  The formula is however more general and gives more insight into how the error 

depends on the structure of the problem.  Further examples are given of calculations of error 

in forecasts, forecast changes and consumer surplus measures.   

 

However, the status of these calculations is considerably greater than might be appreciated 

and this issue is explored in Section 3.  First, because the asymptotic normality of the original 
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parameter estimates depends on a second-order approximation, while the calculation of the 

variance of the function is a first-order approximation, it is possible to prove (under 

reasonable conditions) that the function is also asymptotically normal.  Second, because 

likelihood could just as well have been maximised with the derived function as one of the 

original arguments, the estimate of the function is itself a maximum likelihood estimate (again 
under reasonable conditions), with the properties of minimum variance and asymptotic lack of 

bias of all such estimates.  We indicate the conditions under which the properties hold. 

 

A final section uses these results to throw more light on the commonly-used ‘t ratio’ and 

some paradoxes concerning ‘t’ tests. 

 

We conclude that these simple calculation methods can be used to obtain error measures for 

many commonly-needed statistics, that these error measures often have as much validity as 

the original parameter estimates and this approach gives considerable insight into a number of 

paradoxes concerning error calculations. 

 

It is useful to make two notes on related subjects before moving on to the main discussion.  

First, the errors in the parameters discussed in this paper are of course not the only errors in 

model forecasts, as is discussed by de Jong et al. (2005b).  In particular the impact of errors in 

input data can be calculated by similar methods to those presented here.  Second, the 

discussion is presented here in terms of choice models but many of the issues and methods 

can be applied to other forms of model as well. 

 

 

2. The error calculation procedure 
 

In this section we set out a calculation procedure, which can be applied to the parameters of 

any statistically estimated model, to calculate the errors in functions of the estimated 

parameters.  Typically, the criterion used to make the original estimation will be maximum 

likelihood. 

 

2.1 The estimation context 
 

In this section we review a few standard results which form the foundation for the ideas 

presented in the paper. 

 

It is imagined that a choice model is estimated from a large number n of observations of 

revealed or stated preferences of consumers.
1
  This model contains a number of unknown 

parameters which are estimated using the maximum likelihood criterion.  Because of this 

context it is possible in fairly general terms to state a number of the properties of the 

parameter estimates. 

 

The classical result which is widely used in this context is that, provided reasonable 

conditions are met and the model is correctly specified (not always a reasonable assumption!) 

then the expected score (first derivative of the likelihood function with respect to the model 

parameters) is zero and the maximum likelihood estimates θ+ of the model parameters are 

distributed asymptotically normally around the true values θ*: 
 

 √n . (θ+
 – θ*)  →  N ( 0, (–H)

–1
 ) 

 

where H is the Hessian (second derivative) of the likelihood function with respect to the 
model parameters. 

                                                      
1
 In the transportation context, ‘consumers’ may be travellers, households (e.g. in car ownership 

decisions), freight shippers, etc..   
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If the optimum of the likelihood is well defined, then H will be negative definite and there is 

no problem about inverting (–H) which is a positive definite matrix, to derive (–H)
-1

 as 

another positive definite matrix.  We also note that (–H)
-1

 is the Cramér-Rao lower bound, so 

these estimates are minimum variance. 
 

If the model is not correctly specified but the expected score of the likelihood function is zero 

at θ*, then the ‘sandwich estimator’ can be used: 

 

 √n . (θ+
 – θ*)  →  N ( 0, (–H)

–1
.V.(–H)

–1
) 

 

where V is the variance-covariance matrix of the score vector
2
 and is of course positive 

definite unless the data is linearly dependent, so that the product defining the 
covariance of the normal distribution is positive definite. 

 

Sometimes, e.g. when it is inconvenient to calculate the true second derivative matrix, V is 

used as an approximation to –H, and V
–1

 as an approximation to the covariance matrix of 

errors in θ, a method popularised by Berndt et al. (1974); for that reason V is often referred to 

as the BHHH matrix.    In any of these three cases, we have a matrix which we can use to 

describe the covariance of the estimates θ+
, so we can write 

 

 √n . (θ+ – θ*)  →  N ( 0, Θ) 

 

where Θ is (–H)–1, (–H)–1.V.(–H)–1 or V–1 as appropriate.   

 

Because we have assumed that there is a large number of observations, we shall not 

investigate small-sample properties of the estimations.   

 

All the estimators are asymptotically unbiased, i.e. distributed with a mean which is equal to 
the true value, and consistent, i.e. converge to the true value as the amount of data increases 

(this is the role of √n in the formulae above).  Further, the distribution of those estimates can 

be taken as normal, with a covariance matrix which can be calculated without great difficulty.   

 

2.2 First-order approximation of error in functions of parameters 

 

Suppose we can express a required output as a differentiable function of the parameters, e.g. 

 

 φ  = φ (θ). 

 

The Slutsky Theorem3 states that continuous functions of consistent estimators are consistent 

estimators of the functions.  That is, making calculations of functions of model parameters 

gives results that have at least reasonable properties.  For this theorem θ does not have to be a 

maximum likelihood estimator, but we shall see later that if θ is a maximum likelihood 

estimator, and under certain other conditions, these results can have substantially more status 

and correspondingly better properties. 
 

Then it is shown by simple calculus in statistical textbooks that a first-order approximation to 

the error in φ induced by the error in θ is given by 

                                                      
2
 This result is quoted by Train (2003), p. 228. 

3
 Quoted by Ben-Akiva and Lerman (1985), p. 19.  Ben-Akiva and Lerman give the example of 

the ratio estimator for θ1/θ2, failing to notice that this is not continuous at θ2=0!  However, replacing φ 

by φ*=θ1.θ2*, with θ2*=1/θ2 if |θ2|>δ>0 and θ2*=θ2/δ
2
 otherwise produces a continuous estimator; then 

letting δ→0 covers as much of the range as we wish. 



 4 

 

 var (φ)  ≅  φ′ T Θ φ′       (1) 

 

where φ′ is the vector first derivative of the function φ with respect to θ and Θ is the 

covariance matrix of the estimates of θ. 

 

This approximation can be used in a wide range of circumstances to estimate the error in 

functions of estimated parameters. 

 

Example (1): suppose we wish to calculate a simple ratio of parameters (assuming the 

denominator is never zero) 

 

 v = θ1 / θ2 

 

we can differentiate v to obtain 

 

 v1 = 1 / θ2 

 v2 = – θ1 / θ2
2 

 vj = 0 for any other components in θ. 

 
Application of equation (1) for the variance of v gives 

 

 var (v) ≅  φ′ T Θ φ′  =  Θ11 v1
2
  +  Θ22 v2

2
  + 2 Θ12 v1 v2 

 
writing out the matrix multiplication in full.  Then, substituting the derivative values we get 

 

var (v) ≅  Θ11 / θ2
2
  +  Θ22 . θ1

2
 / θ2

4
  – 2 Θ12 θ1 / θ2

3
 

 

  ≅  v
2
 (Θ11 / θ1

2
  +  Θ22 / θ2

2
  – 2 Θ12 / θ1θ2 ) 

 

which is the well-known formula for the approximate variance of a ratio of random variables 

and is often applied to calculate the value of time and similar ratios in travel demand analysis. 
 

This formula is usually derived by more ad hoc methods specific to the case of a ratio, which 

conceal the way in which the first derivative operates.  Moreover, for each new function we 

usually need to go back to first principles.  The generality of the first derivative approach, i.e. 

equation (1), will be illustrated by application in more complex contexts below.   

 

It may be noted that the first-derivative calculation does not depend on the method that was 

used to derive the parameter estimates – we need only consistency.  The deeper analyses 

presented later require that maximum likelihood methods are used, however. 

 

2.3 Generalisation and further examples 

 

An immediate generalisation of equation (1) is to a vector function φ: 

 

 covar (φ)  ≅  φ′ T Θ φ′ 
 

In this equation φ′ is to be seen as the matrix of partial derivatives whose elements are 

 

 φ′ij  =  ∂φi / ∂θj 

 

The specific advantage of this generalisation is that it allows us to calculate the correlations of 

the errors in functions of estimated parameters.  
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Example 1a: Reciprocal 

 

Suppose we estimate a parameter θ with an error variance Θ and we wish to know the error in 

its reciprocal.  This is actually a special case of the ratio estimator derived above, with the 

numerator being constant.  The formulae above simplify considerably and we can calculate 

 

var (1/θ)  ≅  Θ / θ4 

 

It is interesting in this case to note that if we calculate the t ratio 

 

 t (θ)  =  θ / √Θ 

but 

 t (1/θ) = (1/θ) / √ var (1/θ)  =  θ / √Θ 

 

That is, the ‘t’ value for the reciprocal is exactly the same as the ‘t’ value for the original 

parameter, although the meaning of the test is of course radically different.4  This is the first 

of a number of paradoxes concerning ‘t’ ratios that are illustrated by this approach. 

 

Example 2: Product 

 

The calculations for a product are straightforward, since v1 = θ2 and v2 = θ1, we get 

 

var (v) ≅  Θ11 θ2
2  +  Θ22 . θ1

2  + 2 Θ12 θ1θ2 

 

which again is a well-known result that can be found in textbooks., but then as the outcome of 

an ad hoc and complicated calculation procedure, whereas here it is derived from a simple 

formula. 

 
Example 3: Predicted demand 

 

Suppose we calculate demand Qj for alternative j using a simple sample enumeration 

procedure over each member s of a sample 

 

 Qj  =  Σs ws . pjs 

 

where w is the expansion factor for each member of the sample and 

 p is the choice probability. 

 

Then we can calculate the variance in this demand by 

 

 var (Qj) =  Qj′
T

 Θ Qj′ 
 

where Θ is the covariance matrix of the model parameters and Qj′ is a vector whose kth 

element is  

 

 Qjk′  =  Σs ws . ∂pjs/∂θk 

 

If the choice model is a linear multinomial logit and x are the characteristics of the 

alternatives as faced by each member of the sample: 

                                                      
4 This property has been observed in practice when different software (e.g. ALOGIT and 

Biogeme) formulates structural parameters in different ways, such that a parameter in one program is 

the inverse of the corresponding parameter in the other. 
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 pjs = exp Vjs / Σi exp Vis 

 

 Vis  =  Σk θk xisk 

 

then 

 

 Qjk′  =  Σs ws . pjs . (1–pjs) . xjsk 

 

This calculation appears simple enough, but when the model is no longer multinomial logit 

and/or the sample being expanded is large, with complicated calculations for w, the amount of 

calculation involved here can be prohibitive and a sampling approach can be necessary (see 

de Jong et al., 2005b). 

 

For policy issues, a crucial aspect of the calculation is not so much the error in predicted 

demand as the error in the difference in demand for j between two scenarios.  To obtain this 

we could calculate the difference in demand as arising from the change in choice probabilities 

between the two scenarios (i.e. assuming w does not change) 

 

∆Qj  =  Σs ws . ∆pjs 

 

and make the calculations on ∆Q as was done for Q above.  The problem with this approach is 

that the variance of ∆p is complicated to calculate, so it might be preferable to calculate  

 

 var (∆Q)  =  var (Q
1
 – Q

0
)  =  var Q

0
 + var Q

1
 – 2 covar (Q

0
, Q

1
) 

 

where the 0 and 1 superscripts refer to base and policy scenarios respectively.  This approach 

takes advantage of the generalisation of φ to a vector function indicated at the beginning of 

this section.  Reading out from the formula, we can calculate 

 

 covar (Q0, Q1)  =  Q′0T Θ Q′1  =  Q′1T Θ Q′0 
 

where the Q′ are differentials of the respective Q’s for base and policy scenarios.  Since the 

calculation of these differentials is straightforward, the whole calculation becomes quite 

simple.  The covariance is quite important in this calculation, because often demand estimates 

will be highly positively correlated and omitting this correlation from the calculation would 

seriously distort the result. 

 

An important application of this difference calculation is in ‘pivoting’ applications for making 

forecasts.  Here an estimate is made of the change in demand between a base case and a 

forecast scenario, for which the difference error calculation can be applied as above.  Then, 

because of the positive correlation between the model outputs, and if an accurate estimate of 

base traffic is known, a much more accurate estimate of demand under the forecast scenario 

can be obtained. 

 
Example 4: Logsum 

 

A final example of this type of calculation is with the logsum, often used to calculate 

consumer surplus (de Jong et al, 2005a, Kohli and Daly, 2006).  The surplus S and logsum V 

are defined for an individual by 

 

 S  =  (1/θc)V  =  (1/θc) log Σk exp Vk 
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where θc is the coefficient of cost in the model, assumed for simplicity to be constant.  For 

further simplicity we shall assume that the utilities Vk of the alternatives k are associated with 

a linear logit choice model as given in the equations above.  We then obtain 

 

 var (S)  =  S′T . Θ . S′ 
and 

 S′j  =  (1/θc) { Σk pk xkj  –  δjc S } 

 

where δjc is 1 when j refers to the cost coefficient and 0 otherwise. 

 

This calculation is also very simple, even though it takes into account the correlation with the 

estimate of the cost coefficient, and can be extended, as in the case of the demand 

calculations, to give the surplus for the difference between base and policy scenarios. 

 

To calculate the consumer surplus for a population the separate values for individuals would 

normally be added up (subject to suitable economic reservations!) and error can then be 

calculated using a summed value of S′j which would take proper account of positive 

correlation between the surplus of different individuals. 

 

 

3. The status of transformed estimates 
 

In the previous section of the paper a useful calculation procedure was presented as an 

approximation to obtain estimates of the estimation error associated with the parameters of 

statistical models.  The status of these apparent approximations is now investigated further, 

under the explicit assumption that the estimation is made by maximum likelihood methods.  

 

In the context of maximum likelihood estimates of θ, equation (1) can be seen as a two-stage 

calculation of the variance of the function φ. 

 

� First, the matrix Θ is an asymptotic approximation to the true covariance matrix of 

the estimates θ+
. 

 

� Second, the distribution of φ would naturally be seen as some complicated function 

derived from the asymptotic normality of the distribution of θ+
.  For example, in the 

case of the estimate v of the ratio of two parameters, we might naturally call on 
literature which describes the distribution of the ratio of two normal variates: skewed, 

with complications arising when the denominator gets close to 0.   

 

Altogether, the distribution of v described in this way is unappealing.  However, this ‘two-

stage’ interpretation of equation (1) lacks insight.  A much deeper understanding can be 

obtained along the lines set out by Cramer (1986, Section 3.1).  

 

The first point is that if θ* is the true value of θ, then φ*=φ(θ*) is the true value of φ.  This 

depends only on φ being an ordinary single-valued function (e.g. not a square root, which 

would leave φ* being defined ambiguously). 

 

Then we recall the Slutsky theorem, mentioned above, that if θ+ is a consistent estimator (e.g. 

a maximum likelihood estimator, MLE) of θ, then if φ is continuous φ+
=φ(θ+

) is a consistent 

estimator of φ. 

 

Moreover, if φ is differentiable then a much stronger property can be established, that is that 

the distribution of φ converges asymptotically to a normal distribution 
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 √n . (φ+
 – φ*)  →  N ( 0, φ′T Θ φ′ ) 

 

where Θ is the covariance of θ+
; i.e. φ+

 is asymptotically equivalent to an MLE of φ*, as it has 

the same asymptotic distribution.   

 

Some authors apparently claim that φ+ can be regarded as an MLE with no further ado, that it 

represents the maximisation of likelihood over a space induced by the transformation φ.  
Cramer, however, prefers the more widely accepted view, which is to consider the 

reparametrisation of the model by an invertible vector function to obtain a vector η with the 

same dimension as θ 

 

 η = g(θ)  and θ = g
–1

(η) 

 

For the transformation g to be invertible it must be one-to-one5, as well as differentiable.  

While these conditions may be restrictive from a mathematical point of view, in practice they 

cause little difficulty.  With these conditions, Cramer shows that the distribution of the 

dependent variable is not affected by the transformation, so that η+=g(θ+) is an MLE of η*.    

Cramer then goes on to derive the covariance Φ of φ around φ* 

 

 Φ = g′T Θ g′ 
 

where g′ is the derivative matrix (Jacobian) of g with respect to θ.  This is exactly the result of 

section 2 again but now, because we know η+
 to be an MLE, we also know that Φ is the 

Cramér-Rao lower bound
6
 of minimum variance for the estimator. 

 

We are now in a position to reassess the results derived in section 2.  Instead of seeing the 

first-derivative approach as being a general way to develop useful approximations for the 

error in functions of parameters, we can now see that the functions of parameters can 

themselves be interpreted as true maximum likelihood estimates, while the first-derivative 

approach is exactly what is required to obtain the covariance of the transformed parameter 

estimates around the true values. 

 
In a later remark in the same section, Cramer notes that “a single derived parameter can be 

regarded as part of a larger transformation”.  That is, a transformation can be applied to a 

single parameter which is a component of a parameter vector and this transformed parameter 

can be viewed along with the untransformed parameters as being the maximum likelihood 

estimates.  Similar reasoning can be applied for any subset of the estimates.  Of course, the 

transformations being applied must remain one-to-one and differentiable. 

 
In an important example, we recall Example 1 of section 2, calculating the ratio of parameter 

estimates, for example in estimating the value of time.  Applying the reasoning of the present 

section, we now see that the ratio, i.e. the value of time, is itself a maximum likelihood 

estimate.  Thus it has the properties of consistency, unbiasedness, minimum variance and 

asymptotic normality, that we would wish. 

 

How the ratio of asymptotically normal estimates can itself be asymptotically normal is the 

subject of the following section. 

 

 

                                                      
5
 This also implies g and g

–1
 are non-singular, within the space of interest. 

6
 The accent in Cramér is important in this context! 
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4. Interpretation of errors of estimates 
 

The issue discussed in this section of the paper is the consequences that the discussions above 

have for our interpretation of estimates and their significance.  In particular the interpretation 

of ‘t ratios’ and confidence limits requires a little thought. 
 

In section 2 of the paper, the example was given that the t ratio of the estimate of a reciprocal 

of an MLE parameter was equal to the t ratio of the parameter itself.  In section 3 it was 

shown that the estimate of the reciprocal had just as much status as the initial estimate.  Does 

this mean that a test that a parameter is significantly different from 0 is exactly the same as a 

test that it is significantly different from infinity?  Moreover, how can it be that a parameter 

estimate and an estimate of the reciprocal of the parameter are both distributed asymptotically 

normal? 

 

The information on which the estimates and the error estimates are based comes from the 

likelihood function.  The maximum point of this function is clearly defined, provided there 

are no numerical problems, and presents no problem when we make transformations.  The 

issue arises in defining the distribution around the maximum value. 

 

The information on which the error estimates are based comes from the description of the 

likelihood function that comes out of the estimation process.  At the optimum, we know that 

the first derivative of the function is zero and we have an estimate (from one or other matrix) 

of the second derivatives.  All of the usual information on errors, t ratios and confidence 

limits comes from this matrix of second derivatives.   

 
The information we have is thus that the optimum value of the likelihood function is at a 

certain point, the first derivative is zero and we also know the second derivative (or we have a 

good estimate) at the optimum value.  By assuming that the likelihood function is quadratic, 

i.e. that the second derivative at the optimum applies everywhere, we can obtain an 

approximate view of how the value of the function declines away from the optimum.  It is 

very rare to make systematic tests of the true value of the likelihood function at points away 

from the optimum. 
 

It is therefore not surprising that we find paradoxes such as the t ratio of a parameter and its 

inverse being equal.  At the optimum value, we know that the estimate, the first and second 

derivatives are all consistent between the parameter and its inverse.  But as soon as we move 

away from the optimum, there is no guarantee at all, and it is clear that the likelihood function 

defined in terms of one or both of the formulations (parameter or inverse) must fail to be 

quadratic.  If we want to make conventional significance tests and we are looking at ‘t ratios’ 

around 2,7 we are in fact already some distance from the optimum and it would not be 

surprising to find inconsistencies. 

 

It is frequently stated that the ‘t ratios’ given for non-linear models are approximate and the 

reasons for this are clarified by the results obtained earlier in this paper.  The extent of this 

approximation is perhaps often underestimated. 

 

Is there a better approach?  The conventional calculations made for models estimated on the 

maximum likelihood criterion appear to make best use of the information available at the 

optimum likelihood value.  To get better information, it would be necessary to investigate the 

true variation of the likelihood function as we move away from the optimum.  For example, to 

obtain 95% confidence limits for a parameter, it would be useful to find the upper and lower 

values beyond which 2½% of the likelihood lies.  These would not necessarily be symmetric 
around the optimum values of the parameter, but their inverses would represent the upper and 

                                                      
7
 Conventionally, 95% confidence limits are often taken for t values of ±1.96. 
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lower confidence limits of the inverse of the parameter.  One could then test whether any 

particular value, e.g. 0, lay within the 95% confidence bands.  Making these calculations 

would be time-consuming, as specialised software does not appear to exist.  In most cases, 

therefore, it is necessary to continue to use ‘t ratios’, but with an enhanced understanding that 

attributing any great precision to these values would be incorrect.   
 

T ratios should therefore be taken as general indications of the importance and accuracy of 

estimation of a parameter.  A value of 5 indicates that the parameter should probably be 

included in the model (providing it has the right sign!); a value of 0.2 indicates that it has 

almost no effect.  Given an intermediate value, we need to examine our prior beliefs about the 

importance of the variable in question for the model.   

 

For example, if we estimate a cost parameter in a choice model, after our best efforts to 

improve the model, with a t ratio of –1.3, then: 

· our prior beliefs would usually be strong that cost had a negative impact on the choice 

of an alternative; 

· the data says the value estimated is better than zero, but the data is insufficient to 

make a very good estimate. 

In the absence of any other information, one would usually conclude that the model would be 

better with this parameter taking the estimated value, rather than omitting cost from the 

model, i.e. taking zero to be a better value despite the prior beliefs and evidence of the data, 

albeit weak.  However, if the parameter represented a preference for bus use for people aged 

25-40 compared with the rest of the population, one would conclude that this was probably a 

random effect and there was no reason to include the variable in the model. 

 
Intelligent judgement is, as always, decisive and tests such as the t ratio should be taken only 

as indicative. 

 

 

5. Conclusions 
 

The paper sets out to investigate the way in which error measures can be derived for models 
based on maximum likelihood estimation.  These methods yield estimates with many 

attractive properties, with error estimates that can be estimated in one of three ways, 

depending on the circumstances of the estimation. 

 

Given error estimates for the parameters, a method is presented to determine errors for 

functions of those parameters, based on the first derivative of the function in question.  This 

method is applied to give formulae for errors in the  

· ratio of parameters, 

· and, as a special case of the ratio, the inverse of a parameter, 

· forecast demand from a choice model and 

· consumer surplus estimated from a choice model. 

These calculations are simple in principle and can be applied to numerous other cases, 

avoiding the need for ad hoc calculation in each case.  They are very useful but appear to give 

approximate results. 

 

However, following the explanation of Cramer (1986) it becomes apparent that, under fairly 

weak conditions which would generally apply in transport analysis, functions of maximum 

likelihood estimates are themselves maximum likelihood estimates and the first-derivative 

method yields the true (minimum variance) error measures appropriate to the transformed 

parameters. 
 

A final section discusses some of the apparent paradoxes revealed by these methods. 
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